期刊文献+

基于投影降维技术的期权组合非线性VaR模型 被引量:2

Nonlinear VaR model of options portfolio based on projection dimension reduction technique
下载PDF
导出
摘要 高维期权组合VaR值的计算时间和计算工作量随着市场风险因子维数的增加而迅速增加.为此,引入投影降维技术,用少数几个风险因子来解释高维期权组合总的风险,并结合快速卷积方法,建立了基于投影降维技术的市场风险因子呈厚尾分布情形下的期权组合非线性VaR模型,达到减少计算时间和计算工作量的目的,同时期权组合价值变化的信息又没有太大的损失.数值结果表明,投影降维技术能够达到与快速卷积方法、Monte-Carlo方法差不多的估算精度,而计算效率明显优于快速卷积方法、Monte-Carlo方法,计算时间和计算工作量明显减少. To obtain VaR of options portfolio with many dimensions, the calculation time and effort increases rapidly when market risk factors increase. For this reason, the paper introduces a projection dimension reduc- tion technique to compute VaR of the options portfolio, which uses a few risk factors to explain the total risk of the options portfolio with many dimensions. Moreover, the paper combines it with a fast convolution method, and establishes nonlinear VaR model of options portfolio based on projection dimension reduction technique with market risk factors having heavy-tailed distributions. As a result, the computation time and effort have been largely reduced, however, the information of the change in the options portfolio value has almost not been lost. Numerical results show that computational accuracy using projection dimension reduction technique is slightly different with that of fast convolution method or Monte Carlo simulation method. However, projection dimension reduction technique is more efficient than the fast convolution method or Monte Carlo simulation method of calculation, as its com^utation time a,r] effr, rt ~r~ ~;~,,;~;,.~1 4 a
作者 陈荣达 吕轶
出处 《管理科学学报》 CSSCI 北大核心 2012年第3期72-82,共11页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(70771099 71171176) 浙江省哲学社会科学重点研究基地社科规划课题重点资助项目(10JDGZ02Z)
关键词 期权组合 非线性VaR 投影降维技术 快速卷积方法 T分布 options portfolio nonlinear VaR projection dimension reduction technique fast convolutionmethod t distribution
  • 相关文献

参考文献22

  • 1Wiberg P. Computation of Value-at-Risk: The Fast Convolution Method, Dimension Reduction and Perturbation Theory [ D ]. University of Toronto, Canada, 2002. 被引量:1
  • 2Kercheval A. Optimal covariances in risk model aggregation [ C ]//Proceedings of the Third IASTED International Confer- ence on Financial Engineering and Applications. Calgary: ACTA Press, 2006:30 -35. 被引量:1
  • 3Kreinin A, Merkoulovitch L, Rosen D, et al. Principal component analysis in quasi Monte Carlo simulation[ J ]. Algo Re- search Quarterly, 1998, 1 (2): 21 -30. 被引量:1
  • 4Jorion P. Value at Risk : The New Benchmark for Managing Financial Risk (3th edition) [ M ]. New York: McGraw-HiU Professional, 2006. 被引量:1
  • 5Chen Y, Hardle W, Spokoiny V. Portfolio value at risk based on independent components analysis [ J]. Journal of Computa- tional and Applied Mathematics, 2007, 205 (1) : 594 -607. 被引量:1
  • 6Embrechts P. Linear correlation and EVT: Properties and caveats [ J ]. Journal of Financial Econometrics, 2009, 7 ( 1 ), 30 -39. 被引量:1
  • 7范龙振,王海涛,何华.我国股票市场指数及指数证券投资组合[J].管理科学学报,2002,5(5):11-17. 被引量:12
  • 8王明进,陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):56-64. 被引量:21
  • 9郭名媛,张世英.基于高频金融数据的正交ARFIMA模型及应用[J].系统工程理论与实践,2008,28(11):74-79. 被引量:5
  • 10I Brummelhuis R, Cordoba A, Quintanilla M, et al. Principal component value at risk [ J ]. Mathematical Finance, 2002, 12 (1) : 23 -43. 被引量:1

二级参考文献80

共引文献69

同被引文献48

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部