期刊文献+

直推式支持向量机在垃圾邮件识别中的应用

The application of transductive support vector machines in spam recognition research
下载PDF
导出
摘要 利用改进的支持向量机进行垃圾邮件识别,先对样本进行SVD降维,再结合有标记与无标记样本进行直推式支持向量机训练,实验证明获得的分类器具有较好识别效果. In this paper,the author uses the improved support vector machines for email classification.Firstly,use SVD dimensionality reduction of the samples,then combined with labeled and unlabeled samples for transductive support vector machine training.Experiments show that the classification results have better identify spam.
作者 邝神芬
出处 《韶关学院学报》 2012年第2期13-16,共4页 Journal of Shaoguan University
关键词 TSVM 垃圾邮件 SVD TSVM spam email SVD
  • 相关文献

参考文献5

  • 1Olivier Chapelle,Bernhard Scholkopf,Alexander Zien.Semi-Supervised Learning[M].Chicago:Cambridge:The MIT Press,2006. 被引量:1
  • 2蒋盛益,庞观松,张建军.基于聚类的垃圾邮件识别技术研究[J].山东大学学报(理学版),2011,46(5):71-76. 被引量:2
  • 3Thorsten Joachims.transductive inference for text classification using support vector machines[C]//Association for Computing Ma-chinery.ICML’99 Proceedings of the Sixteenth International Conference on Machine.San Francisco:Morgan Kaufmann Publish-ers Inc,1999:200-209. 被引量:1
  • 4应伟..基于支持向量机的文本分类方法研究[D].天津大学,2005:
  • 5张世荣..支持向量机文本分类算法研究[D].大连理工大学,2007:

二级参考文献9

  • 1王斌,潘文锋.基于内容的垃圾邮件过滤技术综述[J].中文信息学报,2005,19(5):1-10. 被引量:129
  • 2张泽明,罗文坚,王煦法.基于免疫原理的个性化Spam过滤算法[J].模式识别与人工智能,2007,20(3):406-414. 被引量:2
  • 3ANDROUTSOPOULOS I, PALIOURAS G, KARKA- LETSIS V, et al. Learning to filter spam E-mail: a com- parison of a naive bayesian and a memory-based approach [ C ]// Proceedings of the Workshop on Machine Learn- ing and Textual Information Access. New York: ACM Press, 2000: 1-13. 被引量:1
  • 4SAKKIS G, ANDROUTSOPOULOS I, PALIOURAS G, et al. Stacking classifiers for anti-spam filtering of E-mail [C]// Proceedings of the 6th Conference on Empirical Methods in Natural Language Processing. [ S. l. ]: [s.n. ], 2001: 44-50. 被引量:1
  • 5KOPRINSKA I, POON J, CLARK J, et al. Learning to classify E-mail [ J]. Information Sciences, 2007, 177 (10) :2167-2187. 被引量:1
  • 6YANG Yiming, LIU Xin. A re-examination of text cate- gorization methods [ C ]//Proceedings 22nd ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 1999 : 42-49. 被引量:1
  • 7JIANG SY, SONG X Y, HUI W. A Clustering-based method for unsupervised intrusion detections [ J ]. Pattern Recognition Letters, 2006, 27(5) :802-810. 被引量:1
  • 8ANDROUTSOPOULOS I, KOUTSIAS J, CHANDRI- NOS K V, et al. An evaluation of naive Bayesian anti- spam filtering [ C ]// Proceedings of the Workshop on Machine Learning in the New Information Age. New York: ACM Press, 2000: 9-17. 被引量:1
  • 9SAKKIS G, ANDROUTSOPOULOS I, PALIOURAS G, et al. A memory-based approach to anti-spam filtering for mailing lists [ J ]. Information Retrieval, 2003, 6 ( 1 ) :49-73,. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部