期刊文献+

DOA估计算法的一种修正MUSIC算法的研究 被引量:15

Research on modified MUSIC algorithm of DOA estimation
下载PDF
导出
摘要 传统改进MUSIC算法通过对接收信号协方差矩阵作预处理,使信号协方差矩阵分解得到信号子空间与噪声子空间正交,从而降低噪声的影响。但当信号间隔很小时,随着信噪比的降低,传统改进MUSIC算法已无法分辨出信号。基于此问题提出的修正MUSIC算法在使信号子空间与噪声子空间正交的基础上,充分利用了噪声子空间及其特征值对噪声子空间的修正,进而构造谱峰搜索函数估计出信号。通过仿真实验,证实了在信噪比很低的情况下,信号间隔很小且存在相关信号时,修正MUSIC算法能准确地估计出传统改进MUSIC算法不能估计的信号。 Traditional improved MUSIC algorithm decomposes the signal covariance matrix to make the signals subspace be orthogonal to the noise subspace, so decreases the effect of the noise. But when the signals interval are very small, traditional improved MUSIC algorithm has been unable to distinguish the signals as the SNR decreases. To this problem, a modified MUSIC is proposed which makes full use of signals subspace and its eigenvalue, on basis of the signals subspace obtained be orthogonal to the noise subspace, construct spectrum search function and then estimate the signals. Through computer simulation, it has been approved that when the signals interval are very small under the condition of the lower SNR and exist the correlated signals, modified MUSIC can estimate the sig- nals accurately that traditional improved MUSIC algorithm can’t estimate.
出处 《计算机工程与应用》 CSCD 2012年第10期102-105,共4页 Computer Engineering and Applications
基金 陕西省科技厅工业攻关项目(No.2010K06-03 No.2010K01-074)
关键词 波达方向估计 MUSIC算法 改进MUSIC算法 修正MUSIC算法 Direction of Arrival(DOA)estimation Multiple Signal Classification(MUSIC)algorithm improved MUSIC algorithm modified MUSIC algorithm
  • 相关文献

参考文献3

二级参考文献18

  • 1高世伟,保铮.一种用于相干和不相干窄带信号源高分辨的广义信号子空间估计方法[J].电子学报,1990,18(4):42-49. 被引量:7
  • 2杨克劭.矩阵分析[M].黑龙江:哈尔滨工业大学出版社,1986.15-18. 被引量:1
  • 3谢俊好.[D].哈尔滨:哈尔滨工业大学,2002,23-27. 被引量:1
  • 4Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. on AP., 1986, AP-34: 276-280. 被引量:1
  • 5Roy R, Kailath T. ESPRIT--Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans. on ASSP, 1989, l37: 984-995. 被引量:1
  • 6Lai W K, Ching P C. A New Approach for Coherent Direction-of-Arrival Estimation[J]. ISCAS' 98. Proceedings of the 1998 IEEE International Symposium on, Circuits and Systems, 1998,5:9-12. 被引量:1
  • 7Haber F, Zoltowski M. Spatial Spectrum Estimation in a Coherent Signal Environment Using an Array in Motion[J]. IEEE Trans. on AP., 1986,3: 301-310. 被引量:1
  • 8Krim H, Viberg M. Two Decades of Array Signal Processing[J]. IEEE Signal Processing Magazine, 1996,13(4): 67-94. 被引量:1
  • 9Naidu Prabhakar S. Sensor Array Singal Processing[M]. Florida: CRC Press, 2001. 被引量:1
  • 10[1] STOICA P,NEHORAI A.MUSIC,maximum likelihood,and Cramer-Rao bound[J].IEEE Trans on ASSP,May 1989,37(5):720-741. 被引量:1

共引文献70

同被引文献102

引证文献15

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部