期刊文献+

支持向量机优化基于K-means的蚁群聚类算法

SVM optimizing the K-means based antclust algorithm
下载PDF
导出
摘要 基于K-means算法思想改进蚁群聚类算法聚类规则,提出一种新的K-means蚁群聚类算法,并通过实验验证其聚类效果;引入具有全局最优性的支持向量机SVM,取各类中心附近适当数据训练支持向量机,然后利用已获模型对整个数据集进行重新分类,进一步优化聚类结果,使聚类结果达到全局最优。UCI数据集实验结果表明,新的算法可以明显提高聚类质量。 Firstly this paper proposes an improved AntClust algorithm (KM-AntClust), which optimizes the rules of AntClust model with K-means mind, then vertifying the clustering effection by experiments. Secondly introducing SVM to turther improve the clustering effection, In this step, the SVM is trained with dataset beyond clusters center at frist, then gaining the global optimal clusters when SVM is utilized to reclassify the original datasets. Experimental results for UCI datasets demonstrate that the improved method can obviously improve the classification quality.
出处 《微型机与应用》 2012年第6期76-79,共4页 Microcomputer & Its Applications
关键词 K-平均算法 蚁群算法 聚类 支持向量机 K-means ant colony optimization clustering SVM
  • 相关文献

参考文献11

  • 1QUEEN J M.Some methods for classification and analysis of multivariate observations[C].Proc.of the5th Berkeley Symp.On Math Statist,1967:281-297. 被引量:1
  • 2KAUFMAN J,ROUSSEEUW P J.Finding groups in data:an introduction to cluster analysis[M].New York:John Wiley&Sons,1990. 被引量:1
  • 3LABROCHE N,MONMARCHE N,VENTURINI G.A new clustering algorithm based on the chemical recognition system of ants[C].Proc of15th European Conference onArtificial Intelligence(ECAI2002),Lyon FRANCE,2002:345-349. 被引量:1
  • 4LABROCHE N,MONMARCHE N,VENTURINI G.Web sessions clustering with artificial ants colonies[EB/OL].(2002-02)[2006-01-12]. 被引量:1
  • 5LABROCHE N,MONMARCHE N,VENTURINI G.AntClust:ant clustering and Web usage mining[C].GECCO2003:25-36. 被引量:1
  • 6VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 7CORTES C,VAPNIK V.Support vector networks[J].Machine Learning,1995(20):273-297. 被引量:1
  • 8白亮,老松杨,胡艳丽.支持向量机训练算法比较研究[J].计算机工程与应用,2005,41(17):79-81. 被引量:15
  • 9沈翠华,刘广利,邓乃扬.一种改进的支持向量分类方法及其应用[J].计算机工程,2005,31(8):153-154. 被引量:12
  • 10YANG Y,KAMEI M.Clustering ensemble using swarm intelligence[C].IEEE SWRFB intelligence symposium.Piscataway,NJ:IEEE service center,2003:65271. 被引量:1

二级参考文献22

  • 1Vapnik V N. An Overview of Statistical Learning Theory. IEEE Trans . on NN,1999,10(3): 988-999. 被引量:1
  • 2Nello C,John S T. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press,2000. 被引量:1
  • 3Nakaya A,Furuukawa H,Morishita S. Weighted Majority Decision Among Several Region Rules for Scientific Discovery. Discovery Science,1999: 17-29. 被引量:1
  • 4Gestel T V. Benchmarking Least Squares Support Vector Machines Classifier. http://www. Citeseer. Nj.nec.com,2001. 被引量:1
  • 5Meyer D,Leisch F,Hornik K. Benchmarking Support VectorMachines. http://www. wu-wien. Ac. at/am/download/report78. pdf,2002. 被引量:1
  • 6Auer P,Burgsteiner H,Maass W. Reducing Communication for Distributed Learning in Neural Network. In Article Neural Neworks -ICANN 2001,Springer-Verlag,2001. 被引量:1
  • 7Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag, 1995. 被引量:1
  • 8Cortes C, Vapnik V.Support Vector Networks.Machine Learning, 1995;(20):273-297. 被引量:1
  • 9Osuna E, Freund R, Girosi F.Training Support Vector Machine: An Applicaion to Face Detection[C].In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognitlon,New York, IEEE,1997,130-136. 被引量:1
  • 10Dumais S,Platt J,Heekerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization[C].In:Proceedings of the 7^th International Conference on Information and Knowledge Management,1998. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部