期刊文献+

支持向量机训练算法研究

下载PDF
导出
摘要 本文介绍了基于统计学习理论的支持向量机的各种训练算法,对其进行了归类分析,比较了各个算法的优缺点。最后指出了SVM及其训练算法存在的一些问题和进一步研究动向。
作者 马海兴
出处 《福建电脑》 2007年第10期52-53,共2页 Journal of Fujian Computer
  • 相关文献

参考文献9

二级参考文献73

  • 1VapnikV.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:27
  • 2Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag, 1995. 被引量:1
  • 3Cortes C, Vapnik V.Support Vector Networks.Machine Learning, 1995;(20):273-297. 被引量:1
  • 4Osuna E, Freund R, Girosi F.Training Support Vector Machine: An Applicaion to Face Detection[C].In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognitlon,New York, IEEE,1997,130-136. 被引量:1
  • 5Dumais S,Platt J,Heekerman D,Sahami M.Inductive Learning Algorithms and Representations for Text Categorization[C].In:Proceedings of the 7^th International Conference on Information and Knowledge Management,1998. 被引量:1
  • 6Joachims T.Text Categorization with Support Vector Machines:Learning with Relevant Features[C].In:Proceedings of the 10th Europem Conference on Machine Learning, 1998. 被引量:1
  • 7Courant R,Hilbert D.Methods of Mathematical Physics[M].Volume 1,Berlin: Springer-Verlag, 1953. 被引量:1
  • 8Osuna E,Freund R,Girosi F.An hnproved Training Algorithm for Support Vector Machines[C].In : PrincipeJ, Gile L, Morgan N, Wilson eds.Pmceedings of the 1997 IEEE Workshop on Neural Networks for Signal Proceeding, New York: IEEE, 1997:276-285. 被引量:1
  • 9Joachims T.Making Large-Scale SVM Learning Practical[C].In: Scholkopf B,Burges C J C,Smola A eds.Advanees in Kernel Methods Support Vector Leafing,Cambridge, MA: MIT Press, 1998:169-184. 被引量:1
  • 10Chang C C,Hsu C W,Lin C J.The analysis of decompositon methods for support vector machines[C].In:Workshop on Support Vector machines, IJCAI,1999. 被引量:1

共引文献217

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部