期刊文献+

一类投资优化模型的遗传算法 被引量:1

A genetic algorithm for a portfolio optimization model
下载PDF
导出
摘要 建立了考虑交易费用,并带有整手交易、风险证券投资限额约束和总资本约束的均值-绝对偏差投资优化模型.根据问题可行解的具体特点,提出了一种改进的不可行解的随机修复技巧,并据此设计了一种改进的遗传算法,从而实现了该问题的求解.实证分析表明,本文给出的遗传算法具有较高的搜索效率和稳定性,只要设定适当的遗传代数,从任意初始种群开始,该算法都能够稳定地得到问题的近似最优解. A mean-absolute deviation portfolio optimization model with transaction cost is established,which also take account of several constraints,such as integer transaction,investment limit and total capital.A stochastic repair method of unfeasible solutions is proposed according to the specific characteristics of the solutions,and then a new genetic algorithm based the repair of unfeasible solutions is developed.The empirical analysis shows that the genetic algorithm has higher search efficiency and stability.By setting appropriate genetic generation,starting from arbitrary initial population,the algorithm can obtain an approximate optimal solution of the problem stably.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2012年第2期19-23,36,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11061030)
关键词 投资优化 整手交易 交易费用 投资限额 随机修复 遗传算法 portfolio optimization integer transaction transaction cost investment limit stochastic repair genetic algorithm
  • 相关文献

参考文献16

  • 1MARKOWITZ H M. Portfolio selection [J]. Journal of Finance, 1952, 7(1) : 77-91. 被引量:1
  • 2HOGAR W W, WARREN J M. Toward the development of an equilibrium capital model based on semi-variance [J]. Journal of Financial and Quantitative Analysis, 1974, 9: 1-11. 被引量:1
  • 3MARKOWTITZ H M. Computation of mean- semivariance efficient sets by the critical line algorithm [J]. Annals of Operational Research, 1993, 45: 307-317. 被引量:1
  • 4KONNO H, YAMAZAKI H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market[J]. Management Science, 1991, 37(5): 519-531. 被引量:1
  • 5ZENIOS S, KANG P. Mean-absolute deviation portfolio optimization for mortgage-backed securities [J].Annals of Operations Research, 1993, 45(1) : 433-450. 被引量:1
  • 6FEINSTEIN C D, THAPA M N. A reformulation of a mean-absolute deviation portfolio optimization model[J]. Management Science, 1993, 39 12): 1552-1553. 被引量:1
  • 7CHANG T J, YANG S C. Portfolio optimization problems in different risk measures using genetic algorithm[J]. Expert Systems with Appllcatlons, 2009, 36: 10529-10537. 被引量:1
  • 8KELLERER H, MANSINI R, SPERANZA M G. Selecting portfolios with fixed costs and minimum transaction lots[J].Annals of Operations Research, 2000, 99: 287-304. 被引量:1
  • 9MARINGER D. Transaction costs and integer constraints [J].//AMMAN H M, RUSTEM B. Portfolio Management with Heuristic Optimization. Computational Management Science, 2005, 8:77- 99. 被引量:1
  • 10曾建华,汪寿阳.一个基于模糊决策理论的投资组合模型[J].系统工程理论与实践,2003,23(1):99-104. 被引量:17

二级参考文献62

  • 1王竹,唐小我,曹长修.加权行和指标下组合证券投资风险最小化迭代算法[J].系统工程,1994,12(5):53-58. 被引量:2
  • 2唐小我,傅庚,曹长修.非负约束条件下组合证券投资决策方法研究[J].系统工程,1994,12(6):23-29. 被引量:38
  • 3陈志平,袁晓玲,郤峰.多约束投资组合优化问题的实证研究[J].系统工程理论与实践,2005,25(2):10-17. 被引量:10
  • 4[1]Markowitz H. Portfolio Selection: Efficient Diversification of Investments[M], New York:Wiley, 1959. 被引量:1
  • 5[2]Markowitz H. Portfolio selection[J]. Journal of Finance, 1952, 3(7): 77-91. 被引量:1
  • 6[3]Konno H, Yamazaki H. Mean-variance deviation portfolio optimization model and its applications to tokyo stock market[J], Management Science, 1991, 37(5):519-531. 被引量:1
  • 7[4]Arnott R D, Wagner W H. The measurement and control of trading costs[J]. Financial Analysts Journal, 1990, 46(7): 73-80. 被引量:1
  • 8[5]Brennan M J. The optimal number of securities in a risky asset portfolio when there are fixed costs of transaction: theory and some empirical results[J]. Journal of Financial Quantitative Analysis, 1975, 10: 483-496. 被引量:1
  • 9[6]Pogue G A. An extension of the Markowitz portfolio selection model to include variable transaction costs, short sales, leverage policies and taxes[J]. Journal of Finance, 1970,25:1005-1028. 被引量:1
  • 10[7]Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs[J]. Journal of the Operational Research Society of Japan,1996, 39: 99-117. 被引量:1

共引文献60

同被引文献10

  • 1张伟,王世清,李爱东,王新刚.BP人工神经网络在混凝土耐久性评价上的应用[J].混凝土,2007(4):8-10. 被引量:7
  • 2王华琪,赵鸣,李杰,丁洁民.混凝土强度统计数据的分析与应用[J].同济大学学报(自然科学版),2007,35(7):861-865. 被引量:20
  • 3尾坂芳夫.混凝土质量管理入门[M].任子明,王家治,译.北京:中国建筑工业出版社,1991. 被引量:1
  • 4SIAMAK SAFARZADEGAN GILAN, HAMED BAHRAMI JOVEIN,ALI AKBAR RAMEZANIANPOUR. Hybrid sup- port vector regression - Particle swarm optimization for pre- diction of compressive strength and RCPT of concretes con- taining metakaolin [J]. Construction and Building Materials, 2012(34) : 321- 329. 被引量:1
  • 5FAT1H OZCAN, CENGIZ D ATIS, OKAN KARAHAN, ERDAL UNCUOG'LU, HARUN TANYILDIZI. Compari-son of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete [J]. Advances in Engineering Software, 2009(40) : 856 863. 被引量:1
  • 6MUCTEBA UYSAL, HARUN TANYILDIZI. Predicting the core compressive strength of self compacting concrete (SCC) mixtures with mineral additives using artificial neural network [J]. Construction and Building Materials, 2011 (25) :4105-4111. 被引量:1
  • 7N P RAJAMANE, J ANNIE PETER, P S AMBILY. Pre- diction of compressive strength of concrete with fly ash as sand replacement material [J]. Cement and Concrete Com- posites, 2007(29):218- 223. 被引量:1
  • 8CHUL-HYUN LIM, YOUNG-SOO YOON, JOONG- HOON KIM. Genetic algorithm in mix proportioning of high-performance concrete [J]. Cement and Concrete Re- search,2004, 34(3) :409-420. 被引量:1
  • 9徐毅慧.基于人工智能的混凝土配合比优化设计[J].漳州职业技术学院学报,2011,13(4):15-18. 被引量:5
  • 10卢启衡,冯晓云,王青元.基于遗传算法的追踪列车节能优化[J].西南交通大学学报,2012,47(2):265-270. 被引量:20

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部