期刊文献+

基于半离散化的CEV过程下两值期权定价研究 被引量:8

Study on the pricing of binary options in the CEV process based on semidiscretization
下载PDF
导出
摘要 研究了常弹性波动率(CEV)过程下一类两值期权定价的数值解法问题.首先根据无套利原理和Ito公式,建立了期权定价模型,得到了在该模型下期权价格所满足的偏微分方程.然后对其中的空间变量进行离散化,得到具体的半离散化差分格式,证明了该差分格式的稳定性和收敛性.最后数值实验表明该算法是一个稳定收敛的算法. This paper studies a numerical solution method for a class of binary options in the constant elasticity of variance (CEV) process. Firstly, the option pricing model is established, and the partial differential equation satisfied by the option price under the model is derived based on the Ito formula and the no-arbitrage principle. Secondly, the concrete semidiscretization difference scheme of the differential equation is obtained by making use of discretization to the spatial variable of the equation, stability and convergence of the difference scheme are proved. Lastly, a numerical experiment shows that the algorithm is stable and convergent.
作者 袁国军
出处 《系统工程学报》 CSCD 北大核心 2012年第1期19-25,共7页 Journal of Systems Engineering
基金 安徽高等学校省级自然科学研究资助项目(KJ20118210) 六安市定向委托皖西学院资助项目(2009LW020)
关键词 期权定价 CEV过程 半离散化 稳定性 收敛性 option pricing CEV process semidiscretization stability convergence
  • 相关文献

参考文献22

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(7):637-655. 被引量:1
  • 2John C H.Options,Futures,and Other Derivatives[M].Singapore:A Simon & Schuster Company,2005:399-447. 被引量:1
  • 3Loa W,Mackinalary A C.Stock market prices do not follow random walks:Evidence from s simple specification test[J].Review of Financial Studies,1988,1(1):41-46. 被引量:1
  • 4Cox J C,Ross S A.The valuation of option for alternative stochastic process[J].Journal of Financial Economics,1976,3(1/2): 145-166. 被引量:1
  • 5Cox J C.The constant elasticity of variance option pricing model[J].Journal of Portfolio Management,1996,22(S):15-17. 被引量:1
  • 6谢赤.不变方差弹性(CEV)过程下障碍期权的定价[J].管理科学学报,2001,4(5):13-20. 被引量:19
  • 7谢赤.CEV过程下回顾期权的定价问题研究[J].系统工程学报,2001,16(4):296-301. 被引量:8
  • 8Davydov D,Linetsky V.Pricing and hedging path-dependent options under the CEV process[J].Management Science,2001,47(7): 949-965. 被引量:1
  • 9Fusai G,Recchioni M C.Analysis of quadrature methods for pricing discrete barrier options[J].Journal of Economic Dynamics & Control,2007,31(3):826-860. 被引量:1
  • 10Dicesare J,Mcleish D.Simulation of jump diffusions and the pricing of options[J].Insurance:Mathematics and Economics,2008, 43(3):316-326. 被引量:1

二级参考文献65

共引文献62

同被引文献28

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部