期刊文献+

梯度神经网络解线性矩阵方程之收敛性分析 被引量:1

Convergence Analysis of Gradient Neural Network Solving Linear Matrix Equations
下载PDF
导出
摘要 为了求解线性矩阵方程问题,应用一种基于负梯度法的递归神经网络模型,并探讨了该递归神经网络实时求解线性矩阵方程的全局指数收敛问题。在讨论渐近收敛性基础上,进一步证明了该类神经网络在系数矩阵满足有解条件的情况下具有全局指数收敛性,在不能满足有解条件的情况下具有全局稳定性。计算机仿真结果证实了相关理论分析和该网络实时求解线性矩阵方程的有效性。 To solve the problem of linear matrix equations, a type of negative-gradient based recurrent neural network is applied, and its global exponential convergence is investigated for the online solution. Base on the discussion of asymptotical convergence, global ex- ponential convergence (when the coefficients satisfy a unique-solution condition) and global stability (when the coefficients do not satis- fy such a condition) of GNN are proved further. Computer-simulation results substantiate the related theoretical analysis and efficacy of the neural network on solving online linear matrix equations.
出处 《控制工程》 CSCD 北大核心 2012年第2期235-239,共5页 Control Engineering of China
基金 中国国家自然科学基金(61075121 60935001)
关键词 梯度神经网络(GNN) 线性矩阵方程 李氏稳定性定理 全局指数收敛 渐近收敛 gradient neural network (GNN) linear matrix equation lyapunov stability theory global exponential convergence as-ymptotical convergence
  • 相关文献

参考文献17

二级参考文献106

共引文献74

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部