期刊文献+

轮式移动机器人路径跟踪的模糊自整定PID控制 被引量:2

Fuzzy Self-tuning PID Control of Path Tracking for Wheeled Mobile Robot
下载PDF
导出
摘要 本文建立了二自由度轮式移动机器人路径跟踪的动力学模型,并设计了自整定模糊PID控制器。利用模糊推理的方法,对PID控制器的参数进行自动整定。仿真实验用常规增量式PID控制和自整定模糊PID控制算法结合进行航向跟踪。结果表明该算法与常规PID算法相比,系统误差减少了20%左右,响应时间减小到原来的0.4,有效地改善了控制器的动态性能,同时表现出了较好的自适应能力。路径跟踪仿真结果表明,轮式移动机器人能够迅速向目标路径靠拢,并能平稳地跟踪规划路径。 A dynamic model of two degrees of freedom for the wheeled mobile robot is built and a self-tuning fuzzy PID controller is designed in this paper.The PID controller parameters are adjusted automatically according to different error situations by the way of fuzzy reasoning.In simulation experiment,a fuzzy PID controller is tested.The system errors are reduced by about 20%,and the response time is decreased to 40% of the original compared with regular control method.The dynamic characteristics of the controller are improved obviously and its adaptive ability tests well.The results of path tracking simulation show that the wheeled mobile robot can be close to the target route rapidly and follow the programmed route steadily.
出处 《机电工程技术》 2006年第1期21-24,共4页 Mechanical & Electrical Engineering Technology
基金 中国大洋协会"十五"深海技术发展项目(项目编号:DY105-3-2-2)
关键词 轮式移动机器人 航向践踏 路径跟踪 模糊自整定PID控制 wheeled mobile robot heading following path tracking fuzzy self-tuning PID
  • 相关文献

参考文献10

二级参考文献37

  • 1王峰.移动式机器人转向的模糊控制(学位论文)[M].北京:北京理工大学机器人中心,1998.. 被引量:1
  • 2Ura T, Fujii T, et al. Self-organizing control system for underwater vehicles[ M]. Washington D. C:Proceedings IEEE OCEANS'90 , 1990. 被引量:1
  • 3Kazuo Ishi, Teruo Fujii, et al. Neural network system for on-line controller adaptation and its application to underwater robot [ A]. Proceedings of the IEEE International Conference on Robotics & Automation[ C]. Belgium: Leuven, 1998. 被引量:1
  • 4Funahashi K I. On the approximate realization of continuous mappings by neural networks[J ]. Neural Network, 1989, 2:183-192. 被引量:1
  • 5Norgaard M, Ravn O, Poulsen N K, et al. Neural networks for modelling and control of dynamic systems[ M ]. London: Springer- Verlag, 2000. 被引量:1
  • 6Ng G W. Application of neural network to adaptive control of nonlinear systems[ M ]. Englamd: Research Studies Press Ltd, 1996. 被引量:1
  • 7Piero A, et al. Adaptive neurocontroller for a nonlinear combat aircraft model[J]. Journal of Guidance,Control and Dynamics, 2001, 24(5) :910-917. 被引量:1
  • 8Chen S, et al. Parallel recursive prediction error algorithm for training layered neural networks[J]. International Journal of Control, 1990, 51 ( 6 ) : 1215-1228. 被引量:1
  • 9Parkum J E, et al. Recursive forgetting algorithms[J]. International Journal of Control, 1992, 55(1) :109-128. 被引量:1
  • 10Leitner J, Calise A, et al. A full authority helicoper adaptive neuro-controller[ A]. IEEE Aerospace Conference Proceedings[C]. New York, 1998. 被引量:1

共引文献94

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部