期刊文献+

基于LS-SVM的矿用隔爆电源蓄电池容量预测 被引量:3

Battery capacity prediction of mining flame-proof power based on LS-SVM
下载PDF
导出
摘要 现有煤矿安全监控系统不能实时在线检测备用蓄电池容量,造成交流断电后备用电池不能可靠运行。提出利用开路电压法检测备用蓄电池容量,通过LS-SVM对蓄电池放电数据进行训练,获取蓄电池端电压与容量的关系模型,在此基础上根据蓄电池端电压实现电池容量预测。通过实验表明,该方法能有效预测矿用隔爆电源备用蓄电池的剩余容量。 The backup battery can' t run reliably after the failure AC power, because the existing safety monitoring system used in mine can't detect the real-time spare battery capacity. The method of open circuit voltage was proposed to detect the capacity of backup battery, the relation model between battery voltage and battery capacity was achieved by using LS-SVM to train discharge data of battery, and then, the battery capacity could be predicted according to the battery voltage. The experiment results show that the method can predict backup battery capacity of mining flame-proof power effectively.
作者 曹珍贯 虞刚
出处 《电源技术》 CAS CSCD 北大核心 2012年第3期371-373,共3页 Chinese Journal of Power Sources
关键词 矿用隔爆电源 蓄电池容量检测 最小二乘支持向量机 mining flame-proof power battery capacity testing least squares support vector machine (LS-SVM)
  • 相关文献

参考文献5

二级参考文献14

  • 1邓亚东,高海鸥,王仲范.Insight混合动力电动汽车驱动系统建模与仿真[J].武汉大学学报(工学版),2004,37(6):62-66. 被引量:6
  • 2沈维祥.铅酸蓄电池开路电压和充电状态的关系的实验研究[J].新能源,1995,17(12):21-23. 被引量:3
  • 3邓亚东 刘磊.基于L—M算法的电动汽车蓄电池建模[J].中国水运(理论版),2005,(1):10-11. 被引量:1
  • 4Martin T Hagan,Howard B Demuth,Mark H Beale. Neural Network Design[M]. China Machine Press, 2002. 被引量:1
  • 5陈清泉 孙逢春.混合动力车辆基础[M].北京:北京理工大学出版社,2001.. 被引量:21
  • 6Trankler H R, Kanoun O. Recent Advances in Sensor Technology//Proc of the 18th IEEE Instrumentation and Measurement Technology Conference. Budapest, Hungary, 2001, I: 309-316 被引量:1
  • 7van der Horn G, Huiising J L. Integrated Smart bensors,Design and Calibration. Dordrecht, Netherlands: Kluwer Academic Publishers, 1998 被引量:1
  • 8Patra J C, van den Bos A. Modeling of an Intelligent Pressure Sensor Using Functional Link Artificial Neural Networks. ISA Transactions, 2000, 39(1) : 15-27 被引量:1
  • 9Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995 被引量:1
  • 10Suykens J A K, Lukas L, van Dooren P, et al. Least Squares Support Vector Machines Classifiers:A Large Scale Algorithm// Proc of the European Conference on Circuit Theory and Design. Stresa, Italy, 1999:839-842 被引量:1

共引文献16

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部