期刊文献+

一种适于在线学习的增量支持向量数据描述方法 被引量:5

An Incremental Support Vector Data Description Method for Online Learning
下载PDF
导出
摘要 本文针对支持向量数据描述(Support Vector Data Description,SVDD)中的在线学习问题,提出了一种增量支持向量数据描述(Incremental Support Vector Data Description,ISVDD)方法。首先,理论明确了增量学习机理在SVDD中的可行性,并深入分析了在线新增样本与已有样本集合的集合划分问题;同时从理论上给出了ISVDD中样本系数变化的依据,推导了ISVDD的理论过程。其次,为了提高理论完备性与应用可靠性,在六种条件下实现了样本属性之间的迁移,获得各个样本系数的变化量。ISVDD方法不仅继承了标准SVDD的优点,能够获得和标准SVDD同样的分类性能,并且显著减少了在线增量样本的训练时间,缓解了数据优化中对内存量的巨大需求。实验结果证明了本文方法的有效性和正确性。 In this paper, an incremental support vector data description (ISVDD) method is proposed for online learn- ing, which is an iterative process for training incremental samples. Firstly, the feasibility of incremental learning on SVDD is proved and we analyze the set division of the incremental sample and existent samples in detail. Meanwhile, the principle of samples' coefficient changing is provided and we develop the complete theory of ISVDD. Secondly, in order to improve the theoretical integrality and reliability in application, under six conditions, the migrating of samples can be achieved, which results in the sample coefficients' changing. Finally, the whole procedure of ISVDD is proposed to achieve online learning of the ISVDD method. Compared with the standard SVDD, the proposed method not only inherits the excellence of SVDD and can achieve the classification accuracy as same as that of standard SVDD, but also can reduce training time for online incremental samples and release large memory burthen. The experimental results prove the efficiency and validity of our proposed method.
出处 《信号处理》 CSCD 北大核心 2012年第2期186-192,共7页 Journal of Signal Processing
关键词 支持向量数据描述 增量学习 二次规划 样本迁移 support vector data description incremental learning quadratic programming sample migrating
  • 相关文献

参考文献11

  • 1Tax D M J,Duin R P W.Support Vector Data Description [J].Machine Learning,2004,54(1 ):45-46. 被引量:1
  • 2Shilton A,Palaniswami M,Ralph D,Tsoi,A C.Incremental Training of Support Vector Machines[J].IEEE Transactions on Neural Networks,2005,16(1 ):114-131. 被引量:1
  • 3Cauwenberghs G,Poggio T.Incremental and Decremental Support Vector Machine Learning[J].In Adv.Neural Information Processing Systems,2000,13:409-415. 被引量:1
  • 4Laskov P,Cauwenberghs G,Kruger S.Incremental Support Vector Learning:Analysis,Implementation and Application [J].Journal of Machine Learning,2006,7: 1909-1936. 被引量:1
  • 5Tax D M J,Laskov P.Online SVM Learning:From Classification to Data Description and Back[C].IEEE 13th Workshop on Neural Networks for Signal Processing, 2003,499-508. 被引量:1
  • 6李自国..基于支持向量数据描述的故障诊断方法研究[D].郑州大学,2007:
  • 7孙即祥编著..现代模式识别[M].北京:高等教育出版社,2008:713.
  • 8Galmeanu H,Andonie R.Implemetation Issues of an Incremental and Decremental SVM[J].Lecture Notes in Computer Science,2008,5163:325-335. 被引量:1
  • 9Lehel C,Opper M.Sparse Online Gaussian Processes [J].Neural Computation,2002,14(3):641-669. 被引量:1
  • 10Xiao H T,Feng G Y,Song Z Y.Hybrid Optimization Method for Parameter Selection of Support Vector Machine [C].2010 IEEE International Conference on Intelligent Computing and Intelligent Systems,2010,1613-1616. 被引量:1

同被引文献47

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部