期刊文献+

基于粒子群优化的高光谱影像端元提取算法 被引量:3

PSO-based endmembers extraction algorithm for hyperspectral imagery
下载PDF
导出
摘要 回顾了粒子群算法的基本原理,分析了端元提取算法的两种技术途径。利用粒子群优化的原理,结合凸面几何学理论和线性光谱混合模型,设计了一种粒子群优化端元提取算法,并设计了算法的快速实现方法。该算法不需要假设影像中存在纯像元,同时保持了端元光谱的形状。利用模拟数据和AVIRIS影像对该算法、SGA算法和NMF算法进行实验对比分析,实验结果证明该算法的端元提取精度优于其他二者。 The theory of particle swarm optimization is reviewed, and two technical ways of endmembers extraction are analyzed. A particle swarm optimization-based endmembers extraction algorithms for hyperspectral imagery is proposed, which is based on the theo- ries of particle swarm optimization, convex geometry and the linear spectral mixture model. The fast implementation method of this al- gorithm is designed. This algorithm needn't suppose that there are pure pixels in hyperspectral images, as well as this algorithm can pre- serve the shape of the endmembers' spectrums. It carries out the experiments by simulative and AVIRIS hyperspectral image, and the results among the PSO-based algorithm, SGA and NMF are compared and analyzed. The results of experiments prove the PSO-based al- gorithm is more accurate than SGA and NMF.
出处 《计算机工程与应用》 CSCD 2012年第8期189-193,共5页 Computer Engineering and Applications
关键词 高光谱影像 粒子群优化 线性混合模型 端元提取 hyperspectral imagery particle swarm optimization linear mixture model endmembers extraction
  • 相关文献

参考文献14

二级参考文献20

  • 1李建勇,俞欢军,张丽平,陈德钊.基于Java多线程技术实现的粒子群优化算法[J].计算机工程,2004,30(22):134-136. 被引量:5
  • 2耿修瑞,童庆禧,郑兰芬.一种基于端元投影向量的高光谱图像地物提取算法[J].自然科学进展,2005,15(4):509-512. 被引量:6
  • 3刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 4[3]Hsieh P F,Landgrebe D A.Classification of high dimensional data[D].Indiana:Purdue University,1998. 被引量:1
  • 5[4]John Shawe-Taylor,Nello Cristianini.Kernel Methods for Pattern Analysis[M].London:Cambridge University Press,2004:47-82. 被引量:1
  • 6[5]Mika S,Ratsch G,Weston J,et al.Fisher discriminant analysis with kernels[A].Neural Networks for Signal Processing IX[C],1999:41-48. 被引量:1
  • 7[6]Baudat G,Fatiha Anouar.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,1(12):2385-2404. 被引量:1
  • 8Boardman J W, et al. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In: 4th Annual JPL Airborne Geoscince workshop. JPL Pub. 1993. 26(1): 11-14 被引量:1
  • 9Theiler J, et al. Using blocks of skewers for faster computation of pixel purity index. In: SPIE Int Conf Optical Science and Technology, Washington: SPIE Pub. 2000. 5-10 被引量:1
  • 10Bowles J, et al. Use of filter vectors in hyperspectral data analysis. In : Proc SPIE Infrared Spaceborne Remote Sensing Ⅲ,Washingon: SPIE Pub. 1995, 148-157 被引量:1

共引文献57

同被引文献14

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部