期刊文献+

Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives 被引量:2

Regulation of Glucose Oxidase Activity through Interaction with Fullerene Derivatives
原文传递
导出
摘要 The 2-(hydroxymethyl)pyridine modified C60 (PY-C60) and methoxydiglycol modified C60 (MDG-C60) are synthesized using Bingel-Hirsch reaction and characterized by nuclear magnetic resonance (NMR) and mass spectra. PY-C60 and MDG-C60 can bind to glucose oxidase (GOx) and quench the fluorescence of tryptophan (Trp) residue in GOx through static mechanism. The conformation of GOx is disturbed after formation of complex with these fullerene derivatives. Kinetic analysis indicates that PY-C60 and MDG-C60 may affect the catalytic activity of GOx with a partial mixed-type inhibition mechanism. In the plasma glucose concentration range (3.6--5.2 mmol·L-1), PY-C60 may significantly accelerate the catalytic velocity of GOx, however, MDG-C60 exerts almost no obvious change to the initial velocity of GOx, suggesting that elaborate design of molecular structure of fullerene derivative is very important for regulating the biological activity of fullerene-enzyme complex. The 2-(hydroxymethyl)pyridine modified C60 (PY-C60) and methoxydiglycol modified C60 (MDG-C60) are synthesized using Bingel-Hirsch reaction and characterized by nuclear magnetic resonance (NMR) and mass spectra. PY-C60 and MDG-C60 can bind to glucose oxidase (GOx) and quench the fluorescence of tryptophan (Trp) residue in GOx through static mechanism. The conformation of GOx is disturbed after formation of complex with these fullerene derivatives. Kinetic analysis indicates that PY-C60 and MDG-C60 may affect the catalytic activity of GOx with a partial mixed-type inhibition mechanism. In the plasma glucose concentration range (3.6--5.2 mmol·L-1), PY-C60 may significantly accelerate the catalytic velocity of GOx, however, MDG-C60 exerts almost no obvious change to the initial velocity of GOx, suggesting that elaborate design of molecular structure of fullerene derivative is very important for regulating the biological activity of fullerene-enzyme complex.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第2期418-426,共9页 中国化学(英文版)
基金 This work was supported by National Natural Science Foundation of China (No. 21073143), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Nos. N9YK0003, N9YK0005), Northwestern Ploytechnical University Foundation for Fundamental Research (Nos. JC200822, JC20100239).
关键词 fullerene C60 glucose oxidase partial mixed-type inhibition mechanism redox mediator electron transfer fullerene C60, glucose oxidase, partial mixed-type inhibition mechanism, redox mediator, electron transfer
  • 相关文献

参考文献66

  • 1Kane, S.; Stroock, A. D. Biotechnol. Prog. 2007, 23, 316. 被引量:1
  • 2Nakamura, E.; lsobe, H. Acc. Chem. Res. 2003, 36, 807. 被引量:1
  • 3Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311,622. 被引量:1
  • 4Belgorodsky, B.; Fadeev, L.; Ittah, V.; Benyamini, HI; Zelner, S.; Huppert, D.; Kotlyar, A. B.; Gozin, M. Bioconjugate Chem. 2005, 16, 1058. 被引量:1
  • 5Gao, Y.; Liu, L.; Ou, Z.; Li, Y.; Yang, G.; Wang, X. Acta Phys.-Chim. Sin. 2010, 26, 495. 被引量:1
  • 6Zhang, X. F.; Shu, C. Y.; Xie, L.; Wang, C. R.; Zhang, Y. Z.; Xiang, J. F.; Li, L.; Tang, Y. L.J. Phys. Chem. C 2007, 111, 14327. 被引量:1
  • 7Braden, B. C.; Goldbaum, F. A.; Chen, B. X.; Kirschner, A. N.; Wilson, S. R.; Erlanger, B. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 12193. 被引量:1
  • 8Innocenti, A.; Durdagi, S.; Doostdar, N.; Strom, T. A.; Barron, A. R.; Supuran, C. T. Bioorg. Med. Chem. 2010, 18, 2822. 被引量:1
  • 9Song, M.; Jiang, G.; Yin, J.; Wang, H. Chem. Commun. 2010, 1404. 被引量:1
  • 10Song, G. G.; Yao, L.; Huang, C.; Xie, X.; Tan, X.; Yang, X. L. Sci. China Set B-Chem. 2009, 52, 626. 被引量:1

同被引文献18

  • 1谢洁,何慧珠.一种可生成单重态氧的新型光敏剂──类卟啉大环金属配合物[J].感光科学与光化学,1996,14(3):212-217. 被引量:2
  • 2张树政.酶制剂工业(下)[M].北京:科学出版社,1998.. 被引量:7
  • 3Wohlfahrt G, TriviC S,Zeremski J, et al. The chemicalmechanism of action of glucose oxidase from Aspergillus niger[J].Molecular and Cellular Biochemistry, 2004,260( 1 ) :69-83. 被引量:1
  • 4Bankar S B,Buie M V, Singhal R S, et al. Optimization ofAspergillus niger fermentation for the production of glucoseoxidase [J], Food and Bioprocess Technology, 2009,2(4): 344 —352. 被引量:1
  • 5Bhatti H, Saleem N. Characterization of glucose oxidase fromPenicillium notatum[J]. Food Technology and Biotechnology,2009,47(3):331-335. 被引量:1
  • 6Kiess M, Hecht H J, Kalisz H M. Glucose oxidase fromPenicillium amagasakiense. Primary structure and comparisonwith other glucose-methanol-choline (GMC) oxidoreductases[J].European joumai of biochemistry,1998,252( 1 ) : 90-99. 被引量:1
  • 7Petruccioli M, Piccioni P, Federici F. Glucose oxidaseoverproduction by the mutant strain M -80.10 of Penicilliumvariabile in a benchtop fermenter[J]. Enzyme and MicrobialTechnology ,1997,21(6): 458-462. 被引量:1
  • 8Steffolani M E, Ribotta P D, Perez G T,et al. Effect ofglucose oxidase, transglutaminase, and pentosanase on wheatproteins : Relationship with dough properties and bread -makingquality[J]. Joumai of Cereal Science, 2010,51 (3 ) : 366-373. 被引量:1
  • 9Eugenia Steffolani M, Ribotta P D, P6rez G T, et al.Combinations of glucose oxidase, a-amylase and xylanase affectdough properties and bread quality [J]. International Journal ofFood Science & Technology,2012,47(3):525-534. 被引量:1
  • 10Sisak C, Csanddi Z, R6nay E,et al. Elimination of glucose inegg white using immobilized glucose oxidase [J]. Enzyme andMicrobial Technology,2006,39(5): 1002-1007. 被引量:1

引证文献2

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部