期刊文献+

基于对应分析的冗余模糊C均值聚类算法研究 被引量:8

Study of multi-prototype fuzzy C-means clustering algorithm using correspondence analysis
原文传递
导出
摘要 针对模糊C均值聚类(FCM)算法聚类原型最适合于球状类型簇的特点,提出了基于类间分离度和类内紧缩度加权的冗余聚类中心的FCM算法,即先将大簇或者延伸形状的簇(非凸)采用加权FCM算法分割成多个小类(冗余类),从而规避FCM算法对初始聚类中心敏感的弱点.由于隶属度划分矩阵的元素是每个样本隶属于各冗余类的隶属度值,因此将其作为各冗余类的类特征,通过对应分析得到冗余类的新特征,再次采用加权FCM算法进行冗余类合并,最后达到分类效果.以代表曲线分割和曲面分割分类问题的3个典型数据集为算例,结果表明该方法能够识别不规则的簇,解决了FCM算法对初始聚类中心敏感的缺陷. Novel fuzzy C-means (FCM) clustering algorithm based on inter-class separation and intra- class contraction was proposed, for the purpose of solving the problems that the FCM algorithm was sensitive to the initial prototypes, and it did not work well unless the shape of clusters was convex.Large clusters or elongated shaped clusters were first divided into lots of small clusters using weighted FCM. The elements of the fuzzy membership matrix were regarded as the features of small clusters, for they represented the degrees that samples belong to different classes. Correspondence analysis wasapplied to get the new features of small clusters, and small clusters were merged by using the weigh- ted FCM again to accomplish clustering. Experiment results on three typical datasets which can represent the clustering problems of curve segmentation and surface segmentation show that this method can well recognize irregular clusters, and validly avoid the dependency of the FCM on initial prototypes as well.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期107-111,132,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61072143)
关键词 模糊C均值聚类算法 对应分析 加权FCM算法 模糊隶属度矩阵 类间分离度 类内紧缩度 fuzzy C-means clustering algorithm correspondence analysis weighted fuzzy C-meansclustering algorithm fuzzy membership matrix inter-class separation intra-class con-traction
  • 相关文献

参考文献10

二级参考文献35

  • 1宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3殷晓明,顾幸生.一种基于改进型遗传算法的模糊聚类[J].华东理工大学学报(自然科学版),2006,32(7):849-851. 被引量:8
  • 4HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002.. 被引量:5
  • 5Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster [J]. J Cybernet, 1974, 3: 32-57. 被引量:1
  • 6Bezdek J. Pattern recognition with fuzzy objective function algorithms[M]. New York.. Plenum, 1981. 被引量:1
  • 7Tong Xiaojun, Li Hongxing, Chen Mianyun, et al. Distributivity and Zadeh's operators[J]. Kybernetes, 2006, 35(10): 1 628-1 635. 被引量:1
  • 8Tong Xiaojun, Lin Yi, Tao Hongjiu. Relashionship between-entropy and-similarity measure of fuzzy sets [J]. Kybernetes, 2006, 35(9): 1 382-1 392. 被引量:1
  • 9Tong Xiaojun, Chen Mianyun, Li Hongxing. Pan-operations structure with non-idempotent pan-addition [J]. Fuzzy Sets and Systems, 2004, 145(3): 463- 470. 被引量:1
  • 10Tong Xiaojun, Chen Mianyun, Lin Yi. The struc-ture of pan-addition operator with pre-determined pan-multiplication[J]. Inf Sei, 2006, 176(3) : 321- 331. 被引量:1

共引文献239

同被引文献74

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部