期刊文献+

基于加权FCM算法的轴承故障诊断 被引量:4

Bearings Fault Diagnosis Based on Feature Weighted FCM Algorithm
下载PDF
导出
摘要 提出一种基于特征评估和特征加权FCM算法的滚动轴承故障诊断方法.对原始振动信号提取时域、频域和小波包归一化能量特征,组成联合特征.然后对联合特征进行评价,计算类可分性评价指标.根据该指标大小选取敏感特征,进行特征加权模糊聚类分析,实现对轴承故障状态的自动识别.特征评估克服了传统方法在特征选择上的盲目性,特征加权提高了分类准确率.实例表明,该算法不仅可以可靠识别不同类型的滚动轴承故障,而且可以识别不同程度的故障. A new method for rolling bearings fault diagnosis was proposed, which was based on feature evaluation and feature weighted Fuzzy C-Means (FCM) algorithm. The time domain features, frequency domain features, and wavelet packet energy features were extracted from the original signals, and these features constructed the combined features. The feature evaluation method was applied to calculate the class separability criterion of the features, and the corresponding sensitive features were selected according to the criterion. Then these selected features were used to identify different fault conditions of bearings. The experimental results demonstrate that the proposed method not only can identify different types of fault, but also can identify different degrees of fault.
出处 《武汉理工大学学报(交通科学与工程版)》 2010年第1期72-75,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:50275089)
关键词 特征评价 特征加权 聚类分析 故障诊断 小波包 feature evaluation feature weight cluster analysis fault diagnosis wavelet packet
  • 相关文献

参考文献7

二级参考文献29

  • 1钱作勤,周祥军.内燃机拉缸故障诊断型专家系统[J].武汉理工大学学报(交通科学与工程版),2004,28(5):634-636. 被引量:7
  • 2楼京俊,朱石坚,何琳.Duffing系统对称破缺分岔及其逆分岔研究[J].武汉理工大学学报(交通科学与工程版),2005,29(1):45-48. 被引量:7
  • 3刘小芳,曾黄麟,吕炳朝.部分监督加权模糊C-均值算法的聚类分析[J].计算机仿真,2005,22(3):114-116. 被引量:9
  • 4温熙森 陈循.机械系统动态分析理论与应用[M].北京:国防工业出版社,1991.150. 被引量:6
  • 5Hornik K.Approximation capabilities of multiplayer feed-forward network[J].Neural Networks,1991,4(2):251~257. 被引量:1
  • 6Gunhee Jang,Jeong Seong-Weon.Vibration analysis of a rotating system due to the effect of ball bearing waviness[J].Journal of Sound and Vibration,2004,269:709~726. 被引量:1
  • 7Belouchrani A,Abed-Meraim K,Amin M G,et al.Blind separation of nonstationary sources.IEEE Signal Processing Letters,2004,11(7):605-608 被引量:1
  • 8Cao X R,Rueywen Liu.General approach to blind source separation.IEEE Trans.Signal Processing,1996,44(3):562-571 被引量:1
  • 9Jutten C,Herault J.Blind separation of sources,Part I:an adaptive algorithm based on neuromimetic.Signal Processing,1991,24:1-10 被引量:1
  • 10Belouchrani A,Abed-Meraim K,Cardoso J F,et al.A blind source separationtechnique using second-order statistics.IEEE Transactions on SignalProcessing,1997,45(2):434-444 被引量:1

共引文献51

同被引文献25

  • 1王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术[J].航空动力学报,2005,20(4):606-612. 被引量:56
  • 2沈国际,陶利民,徐永成.时域同步平均的相位误差累积效应研究[J].振动工程学报,2007,20(4):335-339. 被引量:17
  • 3赵玉成,陈荣华,马占国.旋转机械动力辨识与故障诊断技术[M].徐州:中国矿业大学出版社,2008. 被引量:4
  • 4McFADDEN P D.Application of synchronous averaging to vibration monitoring of rolling element bearings[J].Mechanical Systems and Signal Processing,2000,14(6):891-906. 被引量:1
  • 5YANG Ming,JIN Chen,DONG Guangming,et al.Fault feature extraction of rolling bearing based on cyclic wiener filter and envelope spectrum[J].Mechanical Systems and Signal Processing,2011,25:1773-1785. 被引量:1
  • 6张梅军,陈灏,曹勤,等.EMD分解、分形理论和RBF神经网络相结合的轴承智能故障诊断研究[J].设计与研究,2012,39(11):10-15. 被引量:1
  • 7LY C,RANNEY K,TOM K,et al. Effectiveness of empirical mode decomposition based features com- pared to kurtosis based features for diagnosis of pin- ion crack detection in a helicopter[C]. Annual Con- ference of the Prognostics and Health Management Society, 2010 : 1-10. 被引量:1
  • 8GEOFF L McDonald, ZHAO Q, ZUO M. Maximum correlated kurtosis deeonvolution and application on gear tooth chip fault detection[J]. Machanical Sys- tems and Signal Processing, 2012,33:237-255. 被引量:1
  • 9MING Yang,CHEN Jin,DONG Guangming. Weak fault feature extraction of rolling bearing based on cyclic wie- ner filter and envelope spectrum[J]. Machanical Sys- tems and Signal Processing , 2011, 25:1773-1785. 被引量:1
  • 10袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35. 被引量:88

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部