期刊文献+

SOFC-PEM联合发电系统的不确定性分析

Uncertainty analysis for SOFC-PEM hybrid systems
下载PDF
导出
摘要 以固体氧化物燃料电池与质子交换燃料电池(SOFC-PEM)联合发电系统为研究对象,以系统操作参数作为不确定参数,采用基于拉丁超立方体抽样法的不确定分析方法,即包括以适宜的概率分布函数来表述和量化不确定因素并将不确定性传播到确定性模型来建立输出结果的概率分布规律,进而分析系统操作变量的不确定性对系统净电功率的影响。不同于传统的灵敏度分析方法,考虑参数的概率结构,评价多个参数的相对重要性。结果表明:高SOFC电堆操作温度、低燃料流量和低SOFC燃料利用率有利于减少系统净电功率因不确定因素引起的偏差和波动,但同时以减少系统净电功率为代价。不确定性分析可为在不确定条件下设计参数的优化提供依据。 This article takes SOFC-PEM hybrid systems as the research object and considers the operating parameters to be uncertainty. Uncertainty analysis method based on Latin hypercube sampling involves quantifying the uncertainty in the input parameters in the form of appropriate distribution functions, propagating the uncertainty through a deterministic model to eonstruet the output variability distributions, and analyzing the effects of operational parameter uncertainty on system output. Furthermore, non- traditional sensitivity analysis approach is used to evaluate the relative importance of various parameters considering this distribution structure. Results show that higher operating temperature of SOFC stack, lower fuel rate and lower fuel utilization of SOFC stack can reduee the influence of uncertainty on system output at the expense of system output. Uncertainty analysis can provides more credible basis for the optimization of design parameters under uncertainty.
作者 杨晨 谭玲君
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期10-16,共7页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50876117) 中央高校基本科研业务费资助项目(CDJXS11141149)
关键词 SOFC—PEM联合发电系统 灵敏性分析 不确定性分析 SOFC-PEM hybrid systems sensitivity analysis uncertainty analysis
  • 相关文献

参考文献21

  • 1刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841. 被引量:36
  • 2陈立周.稳健设计[M].北京:机构工业出版社,1999.. 被引量:71
  • 3HISHENS I A, ALSEDDIQUI J. Sensitivity, approximation and uncertainty in power system dynamic simulation[J]. IEEE Transactions on Power System, 2006,21(4) :1808-1820. 被引量:1
  • 4GAMOU S, YOKOYAMA R, ITO K. Optimal unit sizing of cogeneration systems in consideration of uncertainty energy demands as continuous random variables [J]. Energy Conversion and Management, 2002,43(9-12) : 1349-1361. 被引量:1
  • 5SUBRAMANYAN K, DIWEKAR U. Characterization and quantification of uncertainty in solid oxide fuel cell hybrid power system [J]. Journal of Power Sources, 2005,142(1-2): 103-116. 被引量:1
  • 6SUBRAMANYAN K,DIWEKAR U. Optimizing model complexity with application to fuel cell based power systems [J]. Chemical Engineering and Processing, 2007,46(11) :1116-1128. 被引量:1
  • 7DIWEKAR U,RUBIN E S,FREY H C. Optimal design of advanced power systems under uncertainty [J]. Engergy Conversion and Management, 1997, 38 (15- 17): 1725-1735. 被引量:1
  • 8MAWARDI A,PITCHUMANI R. Effects of parameter uncertainty on the performance variability of proton exchange membrane (PEM) fuel cells [J]. Journal of Power Sources, 2006,160 (1-29): 232-245. 被引量:1
  • 9YUNHUA, ZHU. Evaluation of gas turbine and gasifier-based power generation system [D]. North Carolina State University,2004. 被引量:1
  • 10DIWEKAR U. A novel sampling approach to combinatorial optimization under uncertainty [J]. Computational Optimization and Applications, 2003,24 : 335-371. 被引量:1

二级参考文献54

  • 1林忠钦,艾健,张卫刚,李淑慧.冲压稳健设计方法及其应用[J].塑性工程学报,2004,11(4):56-60. 被引量:16
  • 2杨涛,何叶,魏东梅,李磊民.微机电器件的稳健设计[J].工程设计学报,2004,11(3):124-127. 被引量:8
  • 3张义民,贺向东,刘巧伶,闻邦椿.任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J].工程设计学报,2004,11(5):233-237. 被引量:30
  • 4Otto K N, Antonsson E K. Extensions to the Taguchi Method of Product Design[J]. ASME, Journal of Mechanical Design, 1991,115(1) :5-13. 被引量:1
  • 5Du X, Chen W. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design[J]. ASME, Journal of Mechanical Design, 2000, 122(4) :385-394. 被引量:1
  • 6Hasofer A M, I.ind N C. Exact and Invariant Second-moment Code Format[J]. ASCE, Journal of the Engineering Mechanics Division, 1974,100( 1 ) : 111-121. 被引量:1
  • 7Rackwitz R, Fiessler B. Structural Reliability Under Combined Random Load Sequences [J]. Journal of Computers and Structures, 1978,9(4):489-494. 被引量:1
  • 8Chen X, Lind N C. Fast Probability Integration by Three- parameter Normal Tail Approximation [J].Structural Safety. 1983,1(2) :269-276. 被引量:1
  • 9Du X, Sudjianto A. First-order Saddle-point Approximation for Reliability Analysis[J]. AI A Journal, 2004,42(1) :I-9. 被引量:1
  • 10Taguchi G, Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream[M].New York:ASME Press, 1993. 被引量:1

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部