期刊文献+

回归系数的部分岭估计 被引量:3

Partial ridge estimate of regression coefficients
下载PDF
导出
摘要 为了改进存在复共线性的回归模型中回归系数的最小二乘估计的不足,利用构造岭估计的思想,只修正非常接近于零的那部分特征值,从而给出了回归系数的部分岭估计.在均方误差意义下,存在岭参数,使得回归系数的部分岭估计优于最小二乘估计.部分岭估计只修正了很少一部分特征值,所以相对于普通岭估计和广义岭估计的岭参数的确定,部分岭估计的岭参数的确定更加方便精确. To improve the least squares estimate of regression coefficients in linear regression model which has the problem of the multicollinearity.We take advantage of the methods used in the ordinary ridge estimate,and give the partial ridge estimate of the regression coefficients.In the sense of mean squared errors,there exist ridge parameter,make the partial ridge estimate better than the least squares estimate.Because we only change the eigenvalues which are very close to zero in the partial ridge estimate,the determinant of the ridge parameter in the partial ridge estimate is easier than that in the ordinary ridge estimate and in the generalized ridge estimate and more precise.
作者 李明奇 吴旭
出处 《河南理工大学学报(自然科学版)》 CAS 2011年第6期749-752,共4页 Journal of Henan Polytechnic University(Natural Science)
关键词 线性回归模型 复共线性 最小二乘估计 部分岭估计 均方误差 linear regression model multicolinearity least squares estimate partial ridge estimate mean squared errors
  • 相关文献

参考文献10

  • 1王松桂等编著..线性模型引论[M].北京:科学出版社,2004:293.
  • 2HOCKING R.The analysis and selection of variables in linear regression[J].Biometrics,1974,32(1):1-49. 被引量:1
  • 3王松桂.线性回归诊断(Ⅰ)[J].数理统计与管理,1985,4(6):38-49. 被引量:17
  • 4JAMES W,STEIN C.Estimation with quadratic loss[C] //Proceeding of the fourth Berkeley Symposium on mathematical Statistics and Probability.Berkeley:University of California Press,1961:361-379. 被引量:1
  • 5HOERL A E,KENNARD R W.Ridge regression:biased estimation for nonorthogonal problems[J].Technometrics,1970,12(1):55-67. 被引量:1
  • 6HOERL A E,KENNARD R W.Ridge regression:applications to nonorthogonal problems[J].Technometrics,1970,12(1):69-82. 被引量:1
  • 7MASSY W F.Principal component regression in exploratory statistical research[J].Journal of American Statistical Assi-ociation.1965,60(309):234-256. 被引量:1
  • 8BAYE M.PARKER D.Combining ridge and principal component regression:a money demand illustration[J].Com-mun Statist-Theor Meth,1984,13(2):197-205. 被引量:1
  • 9ALANTKWAN.On generalized ridge regression estimators under collinearity and balanced loss[J].Applied Mathemat-ics and Computation.2002,129:455-467. 被引量:1
  • 10汪明瑾,王静龙.岭回归中确定K值的一种方法[J].应用概率统计,2001,17(1):7-13. 被引量:15

二级参考文献3

共引文献30

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部