期刊文献+

流形排序算法预测microRNA 被引量:1

MicroRNA prediction based on manifold ranking
下载PDF
导出
摘要 在已知microRNA(miRNA)较少的情况下,为了提高算法预测的准确性,提出一种基于流形排序的miR-NA预测算法。该算法采用加权图模型描述序列,使用置信传播分配排序分数,降低了算法的时间复杂度;算法根据大规模数据内部全局流形结构进行排序,提高了排序结果的准确性。在人类和按蚊全基因组范围内的实验证明,流形排序算法的预测效果优于传统的预测方法,可以作为预测miRNA的一个有效工具。 In order to improve the precision of microRNA prediction while the number of known microRNAs is small, this paper proposed a novel microRNA prediction algorithm based on manifold ranking. The algorithm adopted the strategy of modeling microRNA prediction process as belief propagation on a weighted graph, hence reduced the time complexity of the algorithm. The core idea of algorithm was to rank the data with respect to the intrinsic manifold structure collectively revealed by a great amount of data, hence enhanced the accuracy of the ranking results. Experiments on H. sapiens and anopheles gambiae genes show that manifold ranking algorithm is better than the traditional algorithm, and can be worked as an effective tool for predicting novel microRNAs.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期819-822,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60970123)
关键词 微小RNA 加权图 置信传播 流形排序 预测 生物信息学 microRNA weighted graph belief propagation manifold ranking prediction bioinformatics
  • 相关文献

参考文献12

  • 1Yimei Cai Xiaomin Yu Songnian Hu Jun Yu.A Brief Review on the Mechanisms of miRNA Regulation[J].Genomics, Proteomics & Bioinformatics,2009,7(4):147-154. 被引量:64
  • 2侯妍妍,应晓敏,李伍举.microRNA计算发现方法的研究进展[J].遗传,2008,30(6):687-696. 被引量:13
  • 3郑凌伶,屈良鹄.计算RNA组学:非编码RNA结构识别与功能预测[J].中国科学:生命科学,2010,40(4):294-310. 被引量:5
  • 4XUE Ceng-hai, LI Fei, HE Tao, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine [ J ]. BMG Bioinformaties, 2005,5 ( 6 ) : 310-317. 被引量:1
  • 5HUANG Ting-hua, FAN Bin, MAX F, et al. MiRFinder: an im- proved approach and software implementation for genome-wide fast mi- croRNA precursor scans[ J ]. BMC Bioinformatics ,2007,7 ( 8 ) : 341 - 349. 被引量:1
  • 6HELVIK S, SNOVE O, SAETROM P. Reliable prediction of Drosha processing sites improves microRNA gene prediction[ J]. Bioinforma- tics ,2007,23 (2) : 142-149. 被引量:1
  • 7JIANG Peng,WU Hao-nan,WANG Wen-kai, et al. MiPred : classifi- cation of real and pseudo microRNA precursors using random forest prediction model with combined features [ J ]. Nucleic Acids Re- search,2007,35(4) : 339-344. 被引量:1
  • 8NAM J, SHIN K, HAN Jin-ju, et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure [ J ]. Nucleic Acids Research,2005,33 (7) :3570- 3581. 被引量:1
  • 9XU Yun-peng, ZHOU Xue-feng, ZHANG Wei-xiong. miRNA predic- tion with a novel ranking algorithm based on random walks [ J ]. Bioin- formatics, 2008,24 ( 13 ) :50- 58. 被引量:1
  • 10ZHOU Deng-yong, JASON W, GRETTON A,et al. Ranking on data manifold [ C ]//THRUN S, SAUL L, SCHLKOPF B, et al. Advances in Neural Information Processing Systems. Cambridge: Massachusetts Institute of Technology ,2004 : 169-176. 被引量:1

二级参考文献170

共引文献79

同被引文献16

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部