期刊文献+

一种基于结构分解和因子分析的贝叶斯网络隐变量发现算法 被引量:2

Hidden Variable Discovering Algorithm of Bayesian Networks Based on Structural Decomposition and Factor Analysis
下载PDF
导出
摘要 隐变量是观察不到或虚拟的变量,直接利用数据驱动的学习方法难以有效地发现隐变量,因而需要结合概率图结构分析的方法。针对基于结构分析的隐变量发现方法中难以确定隐变量个数和位置的问题,提出一种基于结构分解和因子分析的隐变量发现算法(S-FAHF)。S-FAHF算法利用联合树算法生成具较强依赖关系的变量子集,利用因子分析思想,通过求变量子集的特征值和累积贡献率确定变量子集中隐变量的个数,利用负荷矩阵确定隐变量的位置,最后利用打分函数测试所发现的隐变量的有效性。通过算法比较和实验结果表明,该方法能准确地确定贝叶斯网络中隐变量的个数及位置。 Hidden variables are unobservable or virtual variables,and the hidden variables cannot be effectively disco-vered by directly using the learning methods of data driven.The structure analysis methods are used to find hidden variables.Bcause the number and location of hidden variables are difficult to be determined,a learning algorithm(S-FAHF) of hidden variables was presented based on structural decomposition and factor analysis.The S-FAHF algorithm obtains the variables sets(Cliques) by junction tree algorithm,and the variables in a set have stronger dependence relationships.Then,the factor analysis method is inducted to discriminate the number and location of hidden variables for cliques;finally,the BIC scoring function is used to test validity of hidden variables.The results of algorithm comparison and experiment show that S-FAHF algorithm can effectively determine the number of hidden variables and their location.
出处 《计算机科学》 CSCD 北大核心 2012年第2期244-249,共6页 Computer Science
基金 国家自然科学基金(61070131) 国家重点基础研究发展计划(973项目)(2009CB326203)资助
关键词 隐变量发现 贝叶斯网络 因子分析 BIC打分函数 S-FAHF算法 Hidden variable discovering Bayesian networks Factor analysis BIC scoring function S-FAHF algorithm
  • 相关文献

参考文献2

二级参考文献22

  • 1Matrouf D, Scheffer N, Fauve B, et al. A Straightforward and Efficient Implementation of the Factor Analysis Model for Speaker Verification [ EB/OL]. [ 2007-08-29 ]. http://lia. univ-avignon. fr/ fileadmin/documents/Users/Intranet/fich-art/987 -Matrouf-IS07. pdf. 被引量:1
  • 2Campbell W M, Sturim D E, Reynolds D A. Support Vector Machines Using GMM Supervectors for Speaker Verification. IEEE Signal Processing Letters, 2006, 13 (5) : 308 - 311. 被引量:1
  • 3The NIST Year 2006 Speaker Recognition Evaluation Plan [ EB/ OL]. [ 2006-03-08 ]. http://www. nist. gov/speech/tests/spk/2006/sre-06_evalplan-v9. pdf. 被引量:1
  • 4Burger L, Matejka P, Schwarz P, et al. Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(7) : 1979 -1986. 被引量:1
  • 5Reynolds D A, Quatieri T F, Dunn R B. Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing, 2000, 10(1) : 19-41. 被引量:1
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995. 被引量:1
  • 7Reynolds D A. Channel Robust Speaker Verification via Feature Mapping//Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Hongknng, China, 2003, Ⅱ : 53 - 56. 被引量:1
  • 8Teunen R, Shahshahani B, Heck L. A Model-Based Transformational Approach to Robust Speaker Recognition // Proc of the 6th International Conference on Spoken Language Processing. Beijing, China, 2000, Ⅱ: 495 -498. 被引量:1
  • 9Yin Shouchun, Rose R, Kenny P. A Joint Factor Analysis Approach to Progressive Model Adaptation in Text Independent Speaker Verification. IEEE Trans on Audio, Speech and Language Processing, 2007, 15(7): 1999-2010. 被引量:1
  • 10Geman S., Geman D.. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721~742. 被引量:1

共引文献11

同被引文献45

  • 1陈德望.基于模糊聚类的快速路交通流状况分类[J].交通运输系统工程与信息,2005,5(1):62-67. 被引量:34
  • 2Wang Ying-xu. On cognitive informatics[J] Brain and Mind, 2003,4(2):151-167. 被引量:1
  • 3Dharmendra S. Modha, Rajagopal Ananlhanarayanan, et ai. Cog- nitive Computing [J]. Communications of the ACM, 2011,54 (8) :62-71. 被引量:1
  • 4Fukushima K. Neocognitron trained with winner-kill-loser rule[J]. Neural Networks, 2010,23 (7) : 926-938. 被引量:1
  • 5Himon G E. Osindero S, Teh Y W. A fast learning algorithm {or deep belief nets[J]. Neural Computation,2006,18(7) : 1527-1554. 被引量:1
  • 6Arel I,Rose D C,et al. Deep Machine I.earning-A New Frontier in Artificial Intelligence Rescarch[J]. Computational Intelligence Magazine,II';EE, 2010,5(4) : 13-18. 被引量:1
  • 7Dahl G, Yu D, Deng I., et al. Context-dependent pre:trained deep neural networks for large-vocabulary speech recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012.20(I) :30-42. 被引量:1
  • 8Le Q, Ranzato M, Monga R, et al. Building high level features using large scale unsupervised learning[C]//The 29th Interna- tional Conference on Machine I.earning (ICMI.). 2012. Edin- burgh, 2012:81-88. 被引量:1
  • 9Modha D S, Singh R. Network architecture of the long-distance pathways in the macaque brain[J] Proceedings of the National Academy of Sciences,2010,107(30) : 13485 13490. 被引量:1
  • 10Hagmann P,Cammoun L, et al. Mapping the Structural Core of Human Cerebral Cortex[J]. PLOS Biology, 2008, 6 ( 7 ) : 1479- 1493. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部