期刊文献+

面向视听跨媒体检索的神经认知计算模型研究 被引量:3

Research of Neural Cognitive Computing Model for Visual and Auditory Cross-media Retrieval
下载PDF
导出
摘要 跨媒体语义映射和跨媒体语义检索是跨媒体搜索引擎的核心技术问题。对视听神经认知的功能、层次和结构进行了分析,借鉴深度信念网络和时空层次记忆模型的设计思想,建立了一种仿脑的面向视听跨媒体应用的神经认知计算模型。依据神经系统的信息处理机制和认知理论的功能架构来设计可计算模型,系统地讨论了皮层柱的视听信息整合机制和协同认知的处理流程。本模型可为解决跨媒体语义映射和跨媒体语义检索的相关应用提供借鉴和参考,对实现非冯·诺依曼结构的仿脑认知计算进行了一次有意义的探索。 Cross-media semantic mapping and cross-media semantic retrieval are key problems of the search engine.In this paper,we analyzed the functionality,the hierarchy and the structure of the brain’s neurocognitive,and established a in-like neural cognitive computing model for visual and auditory cross-media application after taking into account the idea of deep belief network and hierarchical temporal memory.According to the mechanism of information processing in central nervous system and framework of functional approach in cognitive theories,we designed computational model,and discussed systematically information integration mechanism in cortical column and cooperative cognitive processing of visual and auditory.This model provides a reference to resolve application of cross-media semantic mapping and retrieval,and is significant exploration for brain-like cognitive computation of non-von Neumann structure.
出处 《计算机科学》 CSCD 北大核心 2015年第3期19-25,30,共8页 Computer Science
基金 国家自然科学基金(61305042 61202098) 国防科技工业民用专项科研技术研究项目(2012A03A0939) 河南省教育厅科学技术研究重点项目(13A520071)资助
关键词 媒体神经认知计算 跨媒体语义检索 跨媒体语义映射 认知计算 仿脑计算 Multimedia neural cognitive computing Cross-media semantic retrieval Cross-media semantic mapping Cognitive computing Brain-like
  • 相关文献

参考文献22

  • 1Wang Ying-xu. On cognitive informatics[J] Brain and Mind, 2003,4(2):151-167. 被引量:1
  • 2Dharmendra S. Modha, Rajagopal Ananlhanarayanan, et ai. Cog- nitive Computing [J]. Communications of the ACM, 2011,54 (8) :62-71. 被引量:1
  • 3Fukushima K. Neocognitron trained with winner-kill-loser rule[J]. Neural Networks, 2010,23 (7) : 926-938. 被引量:1
  • 4Himon G E. Osindero S, Teh Y W. A fast learning algorithm {or deep belief nets[J]. Neural Computation,2006,18(7) : 1527-1554. 被引量:1
  • 5Arel I,Rose D C,et al. Deep Machine I.earning-A New Frontier in Artificial Intelligence Rescarch[J]. Computational Intelligence Magazine,II';EE, 2010,5(4) : 13-18. 被引量:1
  • 6Dahl G, Yu D, Deng I., et al. Context-dependent pre:trained deep neural networks for large-vocabulary speech recognition [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012.20(I) :30-42. 被引量:1
  • 7Le Q, Ranzato M, Monga R, et al. Building high level features using large scale unsupervised learning[C]//The 29th Interna- tional Conference on Machine I.earning (ICMI.). 2012. Edin- burgh, 2012:81-88. 被引量:1
  • 8Modha D S, Singh R. Network architecture of the long-distance pathways in the macaque brain[J] Proceedings of the National Academy of Sciences,2010,107(30) : 13485 13490. 被引量:1
  • 9Hagmann P,Cammoun L, et al. Mapping the Structural Core of Human Cerebral Cortex[J]. PLOS Biology, 2008, 6 ( 7 ) : 1479- 1493. 被引量:1
  • 10Preissl R, Wong T M, et al. Compass: A scalable simulator for an architecture for Cognitive Computing [C]//High Perfor- mance Computing, Networking, Storage and Analysis (SC) 2012. Almaden,San Jose,CA,USA,2012: 1 11. 被引量:1

二级参考文献3

共引文献50

同被引文献34

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部