期刊文献+

基于WCVaR风险度量的发电商电量分配模型 被引量:7

Optimization Portfolio Allocation for Generation Companies Based on Worst-case Conditional Value-at-risk
下载PDF
导出
摘要 电力市场中,发电商需要合理分配发电量以追求总利润最大、风险最小。以最坏情况风险价值(WC-VaR)作为风险度量因子,建立了发电商在保证一定的期望收益率下WCVaR风险值最小的发电量分配模型,并对其在实时平衡市场、日前市场和中、远期合约市场的发电量分配比例及有效前沿进行了仿真测验。结果表明,所提出的电量分配模型能较真实地反映发电商所面临的市场风险的本质特性,表明了理论分析的正确性和模型的有效性,从而为发电商的投标决策和风险评估提供了新思路。 To obtain the maximal profit and the minimum risk,it is the duty of generation companies to allocate energy reasonably in power market.Taking the WCVaR as risk management index,an optimal energy allocation model was built for generation companies.Plentiful cases were simulated to test the efficient frontier of models and the energy asset allocation ratio for generation companies among real time equilibrium market,day ahead market,middle-term and long-term contract market.The simulation result shows that the proposed model can exactly reflect the essential characteristics of the market risks which the generation companies must face,the theoretical analysis is correct and the new models are valid.Thereby,the proposed model can be applied to purchasing strategies and risk evaluation of generation companies.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2012年第1期156-160,共5页 Proceedings of the CSU-EPSA
关键词 电力市场 发电商 最坏情况风险价值 发电量分配 风险评估 power market generation companies worst-case conditional value-at-risk(WCVaR) optimization portfolio allocation risk assessment
  • 相关文献

参考文献18

二级参考文献76

共引文献234

同被引文献97

  • 1杨明,韩学山,王士柏,查浩.不确定运行条件下电力系统鲁棒调度的基础研究[J].中国电机工程学报,2011,31(S1):100-107. 被引量:50
  • 2熊鹰,匡亚萍.施工项目工期-成本优化问题的蚁群算法[J].浙江大学学报(工学版),2007,41(1):176-180. 被引量:24
  • 3Liu Wen-jie, Liu Jing-fa , Cui Meng meng, etal. An introductory review on quantum game theory[C]// 2010 Fourth International Conference on Genetic and Evolutionary Computing (ICGEC). NJ : IEEE Press, 2010, 386-389. 被引量:1
  • 4Kameda H, A[tman E, Touati C, et al. Nash equi- librium based fairness[C]// Game Nets'09. Interna- tional Conference on Game Theory for Networks. Is- tanbul, Turkey : IEEE Press, 2009: 533-539. 被引量:1
  • 5Stuart M C, Gary T R, Michael E W. Optimizing post-combustion CO2 capture in response to volatile electricity prices[J]. International Jonmal of Greenhouse Gas Control, 2012, 8(0): 180:195. 被引量:1
  • 6Rebennack S, Iliadis N A, Pereira M V F. Electricity and CO2 emissions system prices modeling and optimization[C]//IEEE Power Technology Confcronce. Bucharest, 1EEE, 2009: 1-6. 被引量:1
  • 7Jorge C, Gonzalo G G, Andrzcj K, et al. Stochastic M1LP model for optimal timing of investments in CO., capture technologies underuncertainty inprices[J]. Energy, 2013, 54(1): 343-351. 被引量:1
  • 8BeyerHG, SendhoffB. Robust optimization-acomprehensive survey [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(33-34): 3190-3218. 被引量:1
  • 9Rockafellar R T, Royset J O. On buffered failure probability in design and optimization of structures[J]. Reliability Engineering and System Safety, 2010, 95(5):499-510. 被引量:1
  • 10Sadegheih A. Optimal design methodologies under the carbon emission trading program using MIP, GA, SA and TS[J]. Renewable and Sustainable Energy Reviews, 2011, 15(I): 504-513. 被引量:1

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部