期刊文献+

基于模糊积分多源数据融合的蛋白质功能预测 被引量:2

Prediction of protein function via data fusion based on fuzzy measure
下载PDF
导出
摘要 近年来多源数据融合成为蛋白质功能预测的一个热点,本文提出一种基于Choquet模糊积分的多源数据融合方法对酵母蛋白进行预测.文中采用支持向量机做基础分类器对各个数据源进行预测,输出概率形式的结果.使用粒子群算法确定模糊密度,基于Choquet模糊积分对每个数据源的结果进行融合.实验表明Choquet模糊积分蛋白质功能预测结果要明显优于传统的加权平均法、支持向量机方法和K近邻方法. Predicting the function of protein is one of the main issues in the post-genomic period and the availability of large amounts of biological data makes it can be achieved.But in many cases the biological data obtained through biotechnology have a high degree of noise and generally a single data source can only provide useful information for a subset of the protein function classes.So data fusion using diverse biological data to predict the protein function arouses general interest in recent years.Compare with the common information fusion method of weighted average,fuzzy measure can reflect not only the importance of different objects,but also the interactions among objects.So in this paper,Choquet fuzzy integral fusion based on fuzzy measure is used to integrate the probabilistic outputs of different classifiers.And the particle swarm algorithm is adopted to search the optimized values of fuzzy density which is crucial for the fuzzy integral. Six data sets are used in this paper.The first five data sets are collected from the open database or calculated by the software of the open database and the last one is the union of the first five.Then the probabilistic support vector machines as base learners are applied to predict the functions of examples from each data set.The Choquet fuzzy integral method which based on the first five data sets' probabilistic outputs of the base learners will be applied.Comparison is made among the Choquet fuzzy integral method,weighted average method,support vector machines method and K nearest neighbors method.The performances of these methods are compared using ten-fold cross-validation techniques.The experimental results show that the Choquet fuzzy integral method performs much better and the data fusion methods which combine multiple types of biological data can substantially improve the results.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期63-69,共7页 Journal of Nanjing University(Natural Science)
基金 吉林省科技发展项目(20090501)
关键词 CHOQUET模糊积分 数据融合 蛋白质功能预测 Choquet fuzzy integral,data fusion,protein function prediction
  • 相关文献

参考文献26

二级参考文献38

  • 1杜天军,陈光,刘占辰,雷勇.基于PSO算法的弹道辨识网络及仿真[J].系统仿真学报,2004,16(11):2517-2519. 被引量:8
  • 2金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:89
  • 3Reiss DJ,Schwikowski B.Predicting protein-peptide interactions via a network-based motif sampler[J].Bioinformatics,2004,20 Suppl 1:I274-I282. 被引量:1
  • 4Hishigaki H,Nakai K,Ono T,et al.Assessment of prediction accuracy of protein function from protein--protein interaction data[J].Yeast,2001,18(6):523-531. 被引量:1
  • 5Samanta MP,Liang S.Predicting protein functions from redundancies in large-scale protein interaction networks[J].Proc Natl Acad Sci U S A,2003,100(22):12579-12583. 被引量:1
  • 6Nabieva E,Jim K,Agarwal A,et al.Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps[J].Bioinformatics,2005,21 Suppl 1:i302-310. 被引量:1
  • 7Letovsky S,Kasif S.Predicting protein function from protein/protein interaction data:a probabilistic approach[J].Bioinformatics,2003,19 Suppl 1:i197-204. 被引量:1
  • 8Deng M,Tu Z,Sun F,et al.Mapping Gene Ontology to proteins based on protein-protein interaction data[J].Bioinformatics,2004,20(6):895-902. 被引量:1
  • 9Deng M,Zhang K,Mehta S,et al.Prediction of protein function using protein-protein interaction data[J].J Comput Biol,2003,10(6):947-960. 被引量:1
  • 10Kirac M,Ozsoyoglu G,Yang J.Annotating proteins by mining protein interaction networks[J].Bioinformatics,2006,22(14):e260-270. 被引量:1

共引文献45

同被引文献33

  • 1管涛,冯博琴.Choquet模糊积分的粗糙性及信息融合[J].西安交通大学学报,2004,38(12):1251-1255. 被引量:8
  • 2T Hawkins, M Chitale, S Luban, et al. Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data [ J ]. Proteins, 2009, 74 : 556 - 582. 被引量:1
  • 3Clark WT, Radivojac P. Analysis of protein function and its prediction from amino acid sequence [J]. Proteins, 2011, 79 : 2086 - 2096. 被引量:1
  • 4Wei Fengjia, Bo Liao, Li Dachao, et al. Protein function prediction using a double weighted K-Nearest neighbor method [ J]. Journal of Computational and Theoretical Nanoscience, 2011, 8 (1) : 80 -83. 被引量:1
  • 5Wei Peng, Wang Jianxin, Cai Juan. Improving protein function prediction using domain and protein complexes in PPI net- works [J]. BMC Systems Biology, 2014, 8: 35. 被引量:1
  • 6Cunningham B A, Hemperly J, Hopp T P, et al. Favin versus concanavalin A: circularly permuted amino acid se- quences [J]. Proceedings of the National Academy of Sciences, 1979, 6 (7) : 3218 - 3222. 被引量:1
  • 7Lindqvist Y, Schneider G. Circular permutations of natural protein sequences: structural evidence [ J]. Current Opinion Structure Biology, 997, 7 (3) : 422 - 427. 被引量:1
  • 8Jeltsch A. Circular permutations in the molecular evolution of dna methyltransferases [ J]. Journal of Molecular Evolution, 1999, 49 (1): 161 - 164. 被引量:1
  • 9Spencer Bliven, Andreas Prlie. Circular permutation in proteins [J]. Plos Computational Biology, 2012, 8: e1002445. 被引量:1
  • 10Lin Jie. Suffix Structures and circular pattern problems [ D]. West Virginia: West Virginia University, 2011. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部