期刊文献+

基于D-S证据理论的主机违规行为检查方法 被引量:1

HOST VIOLATION CHECK METHOD BASED ON D-S EVIDENCE THEORY
下载PDF
导出
摘要 主机违规行为是能对主机及其所在信息系统的安全造成影响,或泄露主机上的重要信息的行为。提出一种主机违规检查方法,针对主机违规行为证据信息进行单一证据源基础概率判定,并通过D-S证据理论对其进行融合,计算得到主机行为的违规系数,以此作为违规检查的判定依据。实验表明,该方法能够满足主机违规检查工作的应用需求,具有较低的误报率和漏检率。 Host violation is a such behaviour that it either breaks the security of the host and its information system or reveals the important information on the host.In this paper,a host violation checking method is proposed,which discriminates the underlying probability of single evidence resource aiming at the evidence information of each violation of host independently,and then fuses them based on D-S evidence theory,and attains violation coefficient of the host behaviour according to calculation,that will be considered as the discrimination basis for violation checking.Experiments indicate that by using this method,the application demand in host violation checking is able to be met with lower false alarm rate and missing rate.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第2期90-93,148,共5页 Computer Applications and Software
基金 信息网络安全公安部重点实验室(公安部第三研究所)开放基金资助课题(C10606)
关键词 D-S证据理论 主机违规行为 异常检测 D-S evidence theory Host violation Anomaly detection
  • 相关文献

参考文献12

  • 1Lane T, Brodley C E. An application of machine learning to anomaly detection 1997. 被引量:1
  • 2Gao Cuixia, Li Zhitang, Chen Lin. Host risk evaluation framework based on multi-source information [ C ]//ISECS International Colloqui- um on Computing, Communication, Control, and Management,2009: 249 - 252. 被引量:1
  • 3Lane T. Machine Learning Techniques for the Computer Security Domain of Anomaly Detection 2000. 被引量:1
  • 4I.ane T, Brodley C E. Temporal sequence learning and data reduction for anomaly detection, 1999(03 ). 被引量:1
  • 5Hoglund A J, Hatonen K, Sorvari A S. A computer hostbased user anomaly detection system using the self-organizing map [ C ]//Proc. Int. Joint Conf. Neural Netw, 2000(5) :411 -416. 被引量:1
  • 6姚婷婷,郑庆华,管晓宏,陈秀真.一种基于主机实时流量的安全评估方法[J].西安交通大学学报,2006,40(4):415-419. 被引量:3
  • 7Geng Lizhong, Jia Huibo. A novel intrusion detection scheme for net- work-attached storage based on multi-source information fusion [ C ]// International Conference on Computational Intelligence and Security,2009. 被引量:1
  • 8Gao Cuixia, Li Zhitang, Discovering host anomalies in multi-source information[ C]//Intemational Conference on Multimedia Information Networking and Security, 2009,2:358-361. 被引量:1
  • 9Xue Jingfeng, Zhao Fengnian, Zhao Xiaolin, et al. Storage-based anomaly intrusion detection technology based on D-S Evidence Theory [ C ]//International Conference on Computer and. Electrical Engineer- ing,2008:507 - 510. 被引量:1
  • 10连一峰,戴英侠,王航.基于模式挖掘的用户行为异常检测[J].计算机学报,2002,25(3):325-330. 被引量:85

二级参考文献22

  • 1田新广,高立志,张尔扬.新的基于机器学习的入侵检测方法[J].通信学报,2006,27(6):108-114. 被引量:15
  • 2[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 3[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132 被引量:1
  • 4[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999 被引量:1
  • 5[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 6[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994 被引量:1
  • 7[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994 被引量:1
  • 8[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883 被引量:1
  • 9Hariri S,Qu Guangzhi,Dharmagadda T,et al.Impact analysis of faults and attacks in large-scale networks[J].IEEE Security and Privacy,2003,1(5):49-54. 被引量:1
  • 10Denning D E.An intrusion-detection model[J].IEEE Transactions on Software Engineering,1987,13(2):222-232. 被引量:1

共引文献119

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部