期刊文献+

新的基于机器学习的入侵检测方法 被引量:15

Intrusion detection method based on machine learning
下载PDF
导出
摘要 提出了一种基于机器学习的用户行为异常检测方法,主要用于UNIX平台上以shell命令为审计数据的入侵检测系统。该方法在LaneT等人提出的检测方法的基础上,改进了对用户行为模式和行为轮廓的表示方式,在检测中以行为模式所对应的命令序列为单位进行相似度赋值;在对相似度流进行平滑时,引入了“可变窗长度”的概念,并联合采用多个判决门限对被监测用户的行为进行判决。实验表明,该方法在检测准确度和实时性上均优于LaneT等人提出的方法。 A new intrusion detection method was presented based on machine learning for intrusion detection systems using shell commands as audit data. In the method, multiple dictionaries of shell command sequences of different lengths were constructed to represent the normal behavior profile of a network user. During the detection stage, the similarities between the command sequences generated by the monitored user and the sequence dictionaries were calculated. These similarities were then smoothed with sliding windows, and the smoothed similarities were used to determine whether the monitored user's behaviors were normal or anomalous. The results of the experience show the method can achieve higher detection accuracy and shorter detection time than the instance-based method presented by Lane T.
出处 《通信学报》 EI CSCD 北大核心 2006年第6期108-114,共7页 Journal on Communications
基金 北京首信集团科研基金资助项目(011025)~~
关键词 信息处理技术 入侵检测 机器学习 行为模式 information processing technique: intrusion detection: machine learning, behavioral pattern
  • 相关文献

参考文献9

二级参考文献18

  • 1张千里.CCERT的建议和入侵检测系统的研究[M].北京:清华大学,2000.. 被引量:1
  • 2[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 3[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132 被引量:1
  • 4[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999 被引量:1
  • 5[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998 被引量:1
  • 6[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994 被引量:1
  • 7[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994 被引量:1
  • 8[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883 被引量:1
  • 9Lane T. Machine learning techniques for the computer security domain of anomaly detection [D].Purdue University, 2000. 被引量:1
  • 10Warrender C, Forrest S. Pearlmutter B. Detecting intru-sions using system calls: altematived.t, models[A].Proceedings of the 1999 IEEE Symposium on Security and Privacy[C]. Berkely, California, USA: IEEE Compu-ter Society, 1999:133-145. 被引量:1

共引文献137

同被引文献114

引证文献15

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部