期刊文献+

拟非扩张映像族的不动点的迭代逼近 被引量:1

Iterative approximation of fixed points for a family of quasi-nonexpansive mappings
下载PDF
导出
摘要 近年来,学者们对映像族的不动点的研究越来越活跃,迭代格式也越来越丰富,但大多都是对非扩张映像族的不动点的迭代法进行的研究,而且有很多算法比较繁琐。为了寻求一种更好的算法来逼近拟非扩张影像族的不动点,在实Hilbert空间中引入一种变形的投影迭代格式,用以逼近2个集合的公共点,这2个集合是拟非扩张映像族的不动点的集合。在适当的条件下,利用混杂投影算法证明了拟非扩张影像族的不动点的强收敛定理,这是构造实Hilbert空间中的拟非扩张映像族的不动点的新的迭代算法。新算法不要求映像的次闭性质,而且比最近的算法简单,最重要的是迭代格式具有一般性。这也是迭代算法主要研究的方向,因此,该算法可以成为以后迭代法研究的参考依据。 In recent years, the scholars on the fixed point study of quasi-nonexpansive mapping are more and more active, and iterative scheme is also more and more rich, but the algorithm on family of nonexpansive of fixed point iterative scheme are more complicated. In this paper, the purpose is to find a better solution to combine family of quasi-nonexpansive mapping of fixed point. In real Hilbert space an modification of iterative program is introduced to combine the common element of two sets, which are family of quasi-nonexpansive mapping. Under appropriate conditions, and by using new hybrid iteration scheme we prove strong convergence theorem on family of quasi-nonexpansive mapping of fixed point. This is a new iterative algorithm to construct family of quasi-nonexpansive mapping of fixed point without making use of demi-closedness property for mapping T, but it is easier and more general than later. It is also the direction of study on iterative scheme. Therefore, this paper can be a reference for iteration scheme later.
出处 《沈阳师范大学学报(自然科学版)》 CAS 2012年第1期20-22,共3页 Journal of Shenyang Normal University:Natural Science Edition
基金 陕西省自然科学基金资助项目(2010JQ1005)
关键词 拟非扩张映像族 投影算法 实HILBERT空间 强收敛 family of quasi-nonexpansive mappings projection algorithm real Hilbert spaces strong convergence
  • 相关文献

参考文献15

  • 1ALBER Y I. Metric and generalizd projection operators in Banach spaces: properties and applications [ C ]//KARTSATOS A G. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type [ M ]. New York: Marcel Dekker, 1996 : 15-50. 被引量:1
  • 2ALBER Y I, REICH S. An iterative method for solving a class of nonlinear operator equations in Banach spaces [ J ]. Pan Amer Math J. ,1994,4(3) :39-54. 被引量:1
  • 3BAUSCHKE H H, COMBETTES P L. A weak-to-strong convergence principle for Feje rmonotone methods in Hilbert space [J]. Math Oper. Rese., 2001,26(3) :248-264. 被引量:1
  • 4CHANG Shisheng, CHO Y J,ZHOU Haiyun. Iterative methods for nonlinear operator equations in Banach space [ M ]. New York : Nova Science Publishers, 2002. 被引量:1
  • 5NAKAJO K,TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [ J ]. J. Math Anal. Appl. , 2003,279(6) :372-379. 被引量:1
  • 6TAKAHASHI W. Nonlinear Functional Analysis [ M ]. Yokohama: Yokohama Publishers, 2000. 被引量:1
  • 7贺龙光著..辛几何与泊松几何引论[M].北京:首都师范大学出版社,2001:301.
  • 8AOYAMA K, KOHSAKA F, WATARU T. Shring projection methods for fiemly nonexpansive mapping [ J ]. Nonliner Analysis, 2009 (10) : 1016-1023. 被引量:1
  • 9陈东青,刘立红,冯光辉.Hilbert空间中Lipschitz拟伪压缩映像公共不动点的杂交投影算法[J].军械工程学院学报,2009,21(6):72-74. 被引量:1
  • 10张安,郭金题,周海云.拟非扩张映像族的公共不动点的迭代方法[J].数学的实践与认识,2010,40(16):144-148. 被引量:2

二级参考文献19

  • 1MOUDAFI A. Viscosity approximation methods for fixed points problems[J ]. J Math Anal Appl, 2000,241( 1 ):46-55. 被引量:1
  • 2XU H K. Viscosity approximation methods for nonexpansive mappings[J ]. J Math Anal Appl, 2004,289( 1 ) :279-291. 被引量:1
  • 3CHANG S S. Viscosity approximation methods for a finite family of nonexpansive mappings in Banaeh spaces[J]. J Math Anal Appl, 2006,323.1402-1416. 被引量:1
  • 4SONG Yisheng, CHEN Rudong. Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings[J ]. Applied Mathematics and Computation, 2006,180: 275-287. 被引量:1
  • 5CHANG S S. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal, 1997,30(7):4197- 4208. 被引量:1
  • 6WANG X. Fixed point iteration for local strictly pseudoeontractive mappings[J ]. Proc Amer Math Soc, 1991,113:727- 731. 被引量:1
  • 7TAN K K, XU H K. The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces[J]. Proc Amer Math Soc, 1992,114:399-404. 被引量:1
  • 8Bauschke H H, Combettes P L. A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces[J]. Math Oper Rese, 2001, 26: 248-264. 被引量:1
  • 9Halpern B. Fixed points of nonexpansive maps[J]. Bull Am Math Soc, 1967, 73: 957-961. 被引量:1
  • 10Ishikawa S. Fixed points and iteration of a nonexpansive mapping in a Banach space[J]. Proc Amer Math Soc, 1976, 59: 65-71. 被引量:1

共引文献8

同被引文献8

  • 1张石生.Banach空间中Ishikawa迭代序列的稳定性和收敛性问题[J].数学学报(中文版),2007,50(5):1051-1062. 被引量:3
  • 2CHANG S S, LEE W H J, THAN K K. Stability and convergence of modified Ishikawa iterative sequences with errors in Banachspaces[J]. Acta Math Hungar, 2006,110(4) : 267 - 285. 被引量:1
  • 3CHANG S S,CHO Y J, KIN J K. The equivalence between the convergence of modified Picard Modified Mann and modified Ishikawa iterations[J]. Math Computer Modelling, 2003,37 : 985 - 991. 被引量:1
  • 4RHOADES B E, SOLTUZ S M. On the equivalence of Mann and Ishikawa itearation methods[J]. Int J Math Math Sci, 2003(7) :451 - 459. 被引量:1
  • 5RHOADES B E, SOLTUZ S M. The equivalence of Mann and Ishikawa iteration for non-Lipschitzian operator[J]. Int J Math Math Sci, 2004(42) :2645 - 2651. 被引量:1
  • 6RHOADES B E, SOLTUZ S M. The equivalence between the eonvergences of Ishikawa and Mann itearations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps[J]. J Math Anal Appl, 2004,289(1) :266 - 278. 被引量:1
  • 7GU F. Some results for a finite family of uniformly L-Lipschitzian mappings in Banach spaces[J]. Positivity, 2008,12 (3) :503 - 509. 被引量:1
  • 8张树义.赋范线性空间中渐近拟伪压缩型映象不动点的修改的广义Ishikawa迭代逼近[J].应用数学学报,2011,34(5):886-894. 被引量:43

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部