期刊文献+

刻画NP-C问题复杂程度的一个模型——对计算Paley图团数的探索实践做出预测 被引量:3

A Mathematical Model of Portraying the Complexity of NP-C Problem Making a Prediction on Exploring the Paley Graph Clique Number
下载PDF
导出
摘要 提出了一个"α层塔幂函数"的数学模型,量化事物发展变化"呈指数型增长"的定性结论,从另一个角度对NP-C问题的复杂程度作初步探讨.以探索Paley图团数的情况为例,根据科学实验的已知数据,推导出相应α层塔幂函数的解析式,刻画计算Paley图的团数所遇到的运算量"呈指数型增长"的规律,对计算Paley图团数的探索实践做出预测. This paper proposes a mathematical model of "α floor tower power function",quantifies the qualitative conclusions of "exponential growth" in development and changes of things and preliminarily discusses the complexity of the NP-C problem from another point of view.Taking the case of exploring the Paley graph clique number for an example and basing on the known data from scientific experiments,this paper derives the analytical expression of the corresponding "α floor tower power function",portrays the regular pattern of operational amount being "exponential growth" encountered when calculating the Paley graph clique number and makes a prediction on exploring the Paley graph clique number
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2011年第4期7-11,共5页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金项目(60563008) 广西省自然科学基金项目(0991278) 广西省教育厅科研项目(200911LX433) 梧州学院科研项目(2009B013 2009B011)
关键词 RAMSEY数 Paley图 NP-C问题 塔幂函数 Ramsey number Paley graph NP-C problem tower power function
  • 相关文献

参考文献13

  • 1杨照岜 杨重骏.未来数学家的挑战-计算量问题.数学传播,1986,10(2):1-7. 被引量:1
  • 2GOREY M R, JOHNSON D S. Computers and intractability-A guide to theory of NP-completeness[ M]. Freeman and Company , 1979. 被引量:1
  • 3GRAHAM R L, ROTHSCHILD B L,SPENCER J H. Ramsey theory [M]. New York:John Wiley & Sons , 1990. 被引量:1
  • 4李乔.拉姆赛理论[M].长沙:湖南教育出版社,1993. 被引量:1
  • 5ERDOS P..Some remarks on the theory of graphs [J]. Bulletin of the American Mathematical Society, 1947, 53:292--294. 被引量:1
  • 6GREENWOODR E, CLEASON A M. Combinatorial relations and chromatic graphs [ J ]. Canadian Journal of Mathematics, 1955,7:1--7. 被引量:1
  • 7KALBFLEISCH J G. Construction of special edge-chromatic graphs [J]. Canadian Mathematical Bulletin, 1965, 8:575--584. 被引量:1
  • 8BURLING J P, REYNER S W. Some lower bounds of the ramsey numbers n( k ,k) [ J]. Journal of Combinatorial Theory, Series B, 1972, 13:168-169. 被引量:1
  • 9SHEARER J B. Lower bounds for small diagonal ramsey numbers[J]. Journal of Combinatorial Theory, Series A, 1986,42:302--304. 被引量:1
  • 10RADZISZOWSK1S P. Small ramsey numbers [ J]. The Electronic Journal of Combinatorics, 2009,12:1--72. 被引量:1

二级参考文献4

共引文献3

同被引文献20

  • 1STEPHAN U, KRISTOFER G. Improved temporal resolution and linked hidden markov nodding for switchable single-molecule FRET[J]. Chem Phys Chem,2011,12(3) :571-579. 被引量:1
  • 2HARRY T, MATTHEW C, EMMANUEL N,et al. Sylvia meek and daniel chandramohan. The clinical impact of combining inter- mittent preventive treatment with home management of malaria in children aged below 5 years: cluster randomised trial[J]. Tropical Medicine& International Health,2011,16(3):280-289. 被引量:1
  • 3PEI F K,DEREK Y C. Integrating prior knowledge in multiple testing under dependence with applications to detecting differential DNA methylation[J]. Biometrics, 2012,68 (3) : 774- 783. 被引量:1
  • 4YAU C,PAPASPILIOPOULOS O, ROBERTS G O,et al. Bayesian non-parametric hidden Markov models with applications in ge- nomics[J]. Journal of the Royal Statistical Society z Series B (Statistical Methodology), 2011,73 (1) : 37 - 57. 被引量:1
  • 5DU C J, MARCO M, DAVID G, et al. Interactive segmentation of clustered cells via geodesic commute distance and constrained density weighted NystrOm method[J]. Cytometry Part A,2010,77A(12):1 137-1 147. 被引量:1
  • 6DANIEL R E, BLAZEJ N, NAYAK P,et al. An automated self-similarity analysis of the pulmonary tree of the sprague - dawley rat[J]. The Anatomical Record z Advances in Integrative Anatomy and Evolutionary Biology,2008,291 (12) : 1 628- 1 648. 被引量:1
  • 7R.L.Graham, B.L.Rothschild, and J.H.Spencer. Ramsey theory[M]. John Wiley & Sons ,1990. 被引量:1
  • 8李乔.拉姆塞理论[M].大连:大连理工大学出版社,2011. 被引量:1
  • 9P.Erdos.Some remarks on the theory of graphs[J]. Bulletin of the American Mathematical Society, 1947,53:292 - 294. 被引量:1
  • 10P.Erdos.Graph theory and probability[J]. Canadian Journal of Mathematics, 1959,11:34 ~ 38. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部