摘要
提出了一个"α层塔幂函数"的数学模型,量化事物发展变化"呈指数型增长"的定性结论,从另一个角度对NP-C问题的复杂程度作初步探讨.以探索Paley图团数的情况为例,根据科学实验的已知数据,推导出相应α层塔幂函数的解析式,刻画计算Paley图的团数所遇到的运算量"呈指数型增长"的规律,对计算Paley图团数的探索实践做出预测.
This paper proposes a mathematical model of "α floor tower power function",quantifies the qualitative conclusions of "exponential growth" in development and changes of things and preliminarily discusses the complexity of the NP-C problem from another point of view.Taking the case of exploring the Paley graph clique number for an example and basing on the known data from scientific experiments,this paper derives the analytical expression of the corresponding "α floor tower power function",portrays the regular pattern of operational amount being "exponential growth" encountered when calculating the Paley graph clique number and makes a prediction on exploring the Paley graph clique number
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2011年第4期7-11,共5页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金项目(60563008)
广西省自然科学基金项目(0991278)
广西省教育厅科研项目(200911LX433)
梧州学院科研项目(2009B013
2009B011)