期刊文献+

指数型增长的四阶Schrdinger方程的能量散射理论

Energy scattering theory for 4-D fourth-order Schrdinger equations with exponential growth
下载PDF
导出
摘要 研究在给定初值充分小的条件下,通过Banach不动点理论来证明指数型增长的四维四阶非线性Schrdinger方程的整体适定性,同时得到整体时空模有界,从而得到散射. In this paper,we study the global well-posedness and scattering theory of the 4-D nonlinear fourthorder Schrdinger equation with exponential growth when the mass of the solution is small enough.
作者 郑继强
出处 《纯粹数学与应用数学》 CSCD 2010年第4期630-636,共7页 Pure and Applied Mathematics
关键词 四阶Schrdinger方程 Strichartz-型估计 整体适定性 散射 fourth-order Schrdinger equation Strichartz-type estimate global well-posedness scattering
  • 相关文献

参考文献9

  • 1Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: fourth order nonlinear SchrSdingertype equations[J]. Phys. Rev. E, 1996,53(2):1336-1339. 被引量:1
  • 2Karpman V I, Shagalov A G. Stability of soliton described by nonlinear SchrSdinger-type equations with higher-order dispersion[J]. Phys. Rev. D, 2000,144:194-210. 被引量:1
  • 3Fibich G, Ilan B, Papanicolaou G. Self-focusing with fourth order dispersion[J]. SIAM J. Appl. Math., 2002,62(4): 1437-1462. 被引量:1
  • 4Ben-Artzi M, Koch H, Saut J C. Dispersion estimates for fourth order SchrSdinger equations[J]. C.R.A.S, 2000,330(1) :87-92. 被引量:1
  • 5Pausader B. Global well-posedness for energy critical fourth-order schrSdinger equations in the radial case[J]. Dynamics of PDE, 2007,4(3):197-225. 被引量:1
  • 6Miao C, Xu G, Zhao L. Global well-posedness and scattering for the defocusing energy critical nonlinear SchrSdinger equations of fourth order in the radial case[J]. J. Differential Equations, 2009,246:3715-3749. 被引量:1
  • 7Miao C, Zhang B. Global well-posedness of the Cauchy problem for nonlinear Schr6dinger-type equations[J]. Discrete Contin. Dyn. Syst., 2007.17:181-200. 被引量:1
  • 8Pausader B. The cubic fourth-order Schrodinger equation[J]. J. Funct. Anal., 2009,256(8):2473-2517. 被引量:1
  • 9Wang B, Hao C, Henryk H. Energy scattering theory for the nonlinear SchrSdinger equations with exponential growth in lower spatial dimensions[J]. J. Differential Equations, 2006,228:311-338. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部