摘要
代数A称为不可分解的,如果A不能分解成理想的直和.满足C(Lo)=C(L)={0}的Jordan李超代数L能够分解成不可分解理想的直和,这种分解在不计理想次序的前提下是唯一的.并证明了完备Jordan李超代数的一些性质.
An algebra Ais called indecomposable if A can not be decomposed into the direct sum of ideals of A. A Jordan Lie superalgebra L satisfying C(L0) = C(L) = {0}can be decomposed into direct sum of indecomposable ideals and this decomposition is unique up to the order of the ideals. Moreover, some results of complete Jordan Lie superalgebras have been proved.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第3期194-198,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(10626011)