期刊文献+

B在Hg_(0.75)Cd-(0.25)Te中掺杂效应的第一性原理研究 被引量:2

Doping effect of boron in Hg_(0.75)Cd_(0.25)Te:first-principles study
原文传递
导出
摘要 基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg_(0.75)Cd_(0.25)Te中的掺杂效应.结果表明B在Hg_(0.75)Cd_(0.25)Te中存在着两种主要形态:第一种是在完整的Hg_(0.75)Cd_(0.25)Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg_(0.75)Cd_(0.25)Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV这种复合体在Hg_(0.75)Cd_(0.25)Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素. Using the first-principles method based on the density functional theory,we study the doping effect of B impurity in HgCdTe (MCT).We find that the most stable configuration of the impurity is at the B hexagonal interstitial position,rather than at the in-situ substitution.The electronic structures and the density of states of B hexagonal interstitial doped MCT are systematically investigated. Near neighbour(NN) and next-near-neighbor(NNN) atoms around the B impurity are obviously relaxed.The relaxation induces the breaking of NN Te-Hg covalent bond.Moreover,B hexagonal interstitial behaves as triple n-type dopant.The charged state analysis indicates that B_i^h(2Hg1Cd) with three positive charges is most stable and forms an effecient donor.However,as long as the Hg vacancy exists,complex impurity between Hg vacancy and B impurity can be easily formed,its binding energy reaches up to 0.96 eV.Such complex behaves as single n-type dopant.Considering radiation damage of B ion implantation,the complex is a main factor restricting the activation of B ion in MCT.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第2期383-392,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10874143 10774127) 教育部博士点新教师基金(批准号:20070530008) 湖南省高校创新平台开放基金(批准号:10K065)资助的课题~~
关键词 碲镉汞(MCT) B掺杂 第一性原理 形成能 mercury cadmium telluride(MCT) B doping formation energy first-principles study
  • 相关文献

参考文献3

二级参考文献12

  • 1[ 1 ] 被引量:1
  • 2[2]Reine M B,Sood A K and Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed R K Willardson and A C Beer(Now York:Academic)p246 被引量:1
  • 3[4]Xiang X D et al 1995 Science 268 1738 被引量:1
  • 4[5]Tung T 1988 J.Cryst.Growth 86 161 被引量:1
  • 5[6]Ghandhi S K,Bhat I B and Tasker N R 1986 J.Appl.Phys.59 2253 被引量:1
  • 6[7]Arias J M et al 1993 Appl.Phys.Lett.62 976 被引量:1
  • 7[8]He L et al 1999 Adv.Mater.11 1115 被引量:1
  • 8[9]Wu O K,Jamba D and Kamath G 1993 J.Cryst.Growth 127 365 被引量:1
  • 9[10]Reine M B et al 1995 J.Electron.Mater.24 671 被引量:1
  • 10Chen J S,J Cryst Growth,1991年,113卷,520—526页 被引量:1

共引文献23

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部