期刊文献+

直管外表面轴向半椭圆裂纹应力强度因子KⅠ的有限元分析 被引量:6

Finite Element Analysis of Stress Intensity Factor for Straight Pipes' Axial Semi-elliptical External Surface Cracks
下载PDF
导出
摘要 利用有限元法对含外表面轴向裂纹的直管进行了分析,应用有限元软件ANSYS建立了裂纹有限元模型,采用参数化建模对内压下裂纹的应力强度因子KI进行计算,得出了影响应力强度因子的主要因素。计算表明,应力强度因子随a/t及a/c成线性变化,并与t/Do为乘幂关系。一般情况下,表面裂纹在最深点(90°)处应力强度因子最大,然后随着角度的减小应力强度因子依次减小。但是在最浅点(0°)处应力强度因子有回升趋势,且随着a/t的增加,这种回升趋势逐渐明显,当a/t=0.8时,甚至出现最浅点KI超过最深点KI的现象,这时对于结构的脆性起裂位置要慎重判断,不能单纯地以最深点KI为断裂依据。 Straight pipes with axial semi-elliptical external surface cracks has been analysed by three-dimensional finite element method.A finite element model of the cracks has been built using ANSYS,and a parametric model has been conducted to calculate the stress intensity factors(SIFs) of the semi-elliptical cracks under internal pressure,and the main factors that impact the SIFs has been obtained.Caculation shows that the SIFs changes linearly with a/t and a/c,in addition,the it's exponentiation relationship between SIFs with t/Do.Usually,the SIFs is biggest at the deepest point(90 degree) and gradually decrease with the degree's decrease,but the SIFs has uptrend at the shallowest point(0 degree),and the uptrend is noticeable with the increase of a/t.Even when a/t is equal to 0.8,the SIFs' value at the shallowest point is bigger than the deepest's,then the location of brittle crack must be judged cautiously,it's could't simply judged by the SIFs at the deepest point.
出处 《化工装备技术》 CAS 2012年第1期10-13,共4页 Chemical Equipment Technology
关键词 应力强度因子 有限元法 表面裂纹 半椭圆裂纹 直管 Stress intensity factors Finite element method Surface cracks Semi-elliptical cracks Straight pipe
  • 相关文献

参考文献8

  • 1Akram Zahoor.Ductile Fracture Handbook [M] .California: Electric Power Research Institute, 1989:1-3. 被引量:1
  • 2Newman Jr JC, Raju I S. An empirical stress intensity factor equation for the surface crack [J] . Engng Fracture Mech, 1981, 15: 185-192. 被引量:1
  • 3Raju I S. Stress-intensity factors for internal and external surface cracks in cylindrical vessels [ J] . Journal of Pressure Vessel Technology, 1952, 104: 293-298. 被引量:1
  • 4Calculation of stress intensity factors for a longitudinal semi-elliptical crack in a finite-length thick-walled cylinder [J]. Faculty of Mechanical Engineering, 2007: 85-94. 被引量:1
  • 5王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算[J].中国海洋平台,2006,21(3):23-26. 被引量:27
  • 6程长征,牛忠荣,叶建乔.边界元法计算浅表面裂纹应力强度因子[J].合肥工业大学学报(自然科学版),2009,32(4):503-507. 被引量:9
  • 7Diamantoudis A Th. Stress intensity factors of semielliptical surface cracks in pressure vessels by globallocal finite element methodology [J] Engineering Fracture Mechanics, 2005, 72:1 299-1 312. 被引量:1
  • 8Chai Guozhong. Stress intensity factors for interaction of surface crack and embedded crack in a cylindrical pressure vessel [J]. International Journal of Pressure Vessels and Piping, 2000,77:539-548. 被引量:1

二级参考文献17

共引文献33

同被引文献45

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部