期刊文献+

改进的正则化模型修正方法在结构损伤识别中的应用 被引量:8

STRUCTURE DAMAGE IDENTIFICATION BY FINITE ELEMENT MODEL UPDATED WITH IMPROVED TIKHONOV REGULARIZATION
原文传递
导出
摘要 基于灵敏度分析的有限元模型修正方法与Tikhonov正则化方法相结合,可以有效抑制实测模态参数中噪声的影响,正确识别结构损伤,但也存在着识别结果过度光滑的缺陷。通过在Tikhonov罚函数项中引入光滑函数,改善Tikhonov正则化方法对非光滑解的描述能力,在保持识别算法鲁棒性的同时,提高模型修正方法对于结构损伤的识别精度。以简支梁模型为例的损伤识别数值模拟表明,该文方法不仅能扩大正则化参数的可选择范围,还能显著降低噪声对识别结果的干扰,提高单元损伤程度的识别精度。 The sensitivity-based finite element model updated with classical Tikhonov regularization can alleviate the ill-conditioning in solving the damage identification problems,and suppress the influence of noise in the measured model parameters.However the introduction of Tikhonov regularization may lead to an over-smooth solution.In order to improve the identification of non-smooth solution,smooth function is introduced in Tikhonov punishment function to enhance robustness and accuracy of the structure damage identification algorithm.The numerical simulations show that sensitivity-based model updated with improved Tikhonov regularization can reduce the influence of measurement noise effectively and identify the structure damages correctly.
出处 《工程力学》 EI CSCD 北大核心 2012年第2期29-33,44,共6页 Engineering Mechanics
基金 国家自然科学基金青年基金项目(50909049) 江西省自然科学青年基金项目(2009GQC0084) 教育部博士点基金项目(20103601110006)
关键词 模型修正 TIKHONOV正则化 损伤识别 光滑函数 正则化参数 model updating improved Tikhonov regularization damage identification smooth function regularization parameter
  • 相关文献

参考文献12

  • 1Yan Y J, Wu Z Y, Yam L H, Development in vibration-based structural damage detection technique [J] Mechanical Systems and Signal Processing, 2001, 21: 2198-2211. 被引量:1
  • 2李辉,丁桦.结构动力模型修正方法研究进展[J].力学进展,2005,35(2):170-180. 被引量:112
  • 3Ahmadian H, Mottershead J E, Friswell M I. Regularization methods for finite element model updating [J]. Mechanical Systems and Signal Processing, 1998, 12(1): 47-64. 被引量:1
  • 4Titurus B, Friswell M I, Regularization in model updating [J]. International Journal for Numerical Methods in Engineering, 2008, 75: 440-478. 被引量:1
  • 5Rad S Z, Methods for updating numerical models instructural dynamics [D]. London: University of London, 1997. 被引量:1
  • 6张立涛,李兆霞,费庆国,孙正华.结构损伤识别中的若干正则化问题研究[J].工程力学,2008,25(5):45-52. 被引量:8
  • 7Weber B, Paultre P, Proulx J. Consistent regularization of nonlinear model updating for damage identification [J] Mechanical Systems and Signal Processing, 2009, 23: 1965- 1985. 被引量:1
  • 8Hua X G, Ni Y Q, Chen Z Q, Ko J M. An improved perturbation method for stochastic finite element model updating [J]. International Journal for Numerical Methods in Engineering, 2008, 13: 1845- 1864. 被引量:1
  • 9Fang S E, Perera R, Roeck G D. Damage identification of a reinforced concrete frame by finite element model updating using damage parameterization [J]. Journal of Sound and Vibration, 2008, 313: 544-559. 被引量:1
  • 10Nocedal J, Wright S J. Numerical optimization [M]. New York: Springer, 1999. 被引量:1

二级参考文献76

  • 1张德文.改进Guyan~递推减缩技术[J].计算结构力学及其应用,1996,13(1):90-94. 被引量:13
  • 2Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound and Vibration, 1993,167(2): 347-375. 被引量:1
  • 3Astrom k J, Eykhoff P. System identification-a survey.Automatica, 1971, 7:123-162. 被引量:1
  • 4Guyan R J. Reduction of stiffness and mass matrices. AIAA Journal, 1965,13(1):380. 被引量:1
  • 5O'Callahan J C. A procedure for improved reduced system (IRS) model. In: Alfred L W, Dominick J, DeMichele, eds.Proceedings of the 7th International Modal Analysis Conference, Los Vegas, 1989-02-20-22. Kissimmee: Union College,1989:17-21. 被引量:1
  • 6Kammer D C. Test-analysis modal development using an exact modal reduction. The International Journal of Analytical and Experimental Modal Analysis, 1987, 2(4): 174-179. 被引量:1
  • 7O'Callahan J C, Avitabile P. System equivalent reduction expansion process(SEREP). In: Alfred L W, Dominick J,DeMichele, eds. Proceedings of the 7th International Modal Analysis Conference, Las Vegas, 1989-02-20-22. Kissimmee:Union College, 1989. 29-37. 被引量:1
  • 8Berman A, , Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21(8):1168-1173. 被引量:1
  • 9Farhat C, Hemez F M. Updating finite element dynamic models using an element-by-element sensitivity methodology. AIAA Journal, 1993, 31(9): 1702-1711. 被引量:1
  • 10Williams E J, Green D J. A spatial curve fitting technique for estimating rotational degrees of freedom. In: Alfred L W, Dominick J, DeMichele, eds. Proceedings of the 8th International Modal Analysis Conference, Orlando, 1990-01-29-01. Kissimmee: Union College, 1990. 376-381. 被引量:1

共引文献116

同被引文献85

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部