期刊文献+

基于修正的对称分解的稀疏近似逆预处理器

Sparse approximate inverse preconditioners based on a revised Cholesky factorization
下载PDF
导出
摘要 提出一种基于修正的对称分解(Cholesky)的稀疏近似逆(SAI)预处理技术。对传统的Cholesky分解进行修正,使之能应用于离散电场积分方程所得的复数对称矩阵,然后,用此修正的Cholesky分解为多层快速多极子算法构造SAI预处理器。数值实验表明:基于修正的Cholesky分解的SAI预处理器比基于QR分解的SAI预处理器更高效。 Sparse approximate inverse(SAI)preconditioner based on a revised Cholesky factorization is presented in this paper.The traditional Cholesky factorization is firstly revised to cope with the matrix arising from electric field integral equations,which is a complex symmetric matrix,then this revised Cholesky factorization is applied to construct SAI preconditioner for the multilevel fast multipole algorithm(MLFMA).Numerical experiments show that SAI preconditioner constructed by the revised Cholesky factorization performs more efficiently than the previous SAI constructed from QR factorization.
出处 《电波科学学报》 EI CSCD 北大核心 2011年第6期1065-1069,共5页 Chinese Journal of Radio Science
基金 国家自然科学基金重点项目(No.10832002) 国家自然科学基金项目(No.60901005) 北京理工大学基础研究基金(No.20090542001) 北京理工大学优秀青年教师持续资助项目(No.2010YS0502)
关键词 复数对称矩阵 CHOLESKY分解 稀疏近似逆 预处理器 complex symmetric matrix Cholesky factorization sparse approximate inverse(SAI) preconditioner
  • 相关文献

参考文献11

二级参考文献49

  • 1胡俊,聂在平,王军,邹光先,胡颉.三维电大目标散射求解的多层快速多极子方法[J].电波科学学报,2004,19(5):509-514. 被引量:75
  • 2Song J M,Lu C C,Chew W C.Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J].IEEE Trans Antennas Propag,1997,45(10):1488-493. 被引量:1
  • 3Lee J,Zhang J,Lu C C.Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in elecromagnetics[J].IEEE Trans Antennas Propag,2004,52(9):2277-2287. 被引量:1
  • 4潘小敏 盛新庆.一种高效通用的合元极并行方案.北京理工大学学报,2008,28(1):1-4. 被引量:1
  • 5Benzi M,Tuma M.A comparative study of sparse approximate inverse preconditioners[J].Appl Numer Math,1999,30:305-340. 被引量:1
  • 6Higham N J.Factorizing complex symmetric matrices with positive definite real and imaginary parts[J].Mathematics of Computation,1998,67(224):1591-1599. 被引量:1
  • 7Frayssé V,Giraud L,Gratton S,et al.Algorithm 842:a set of gmres routines for real and complex arithmetics on high performance computers[J].ACM Trans Math Softw,2005,31(2):228-238. 被引量:1
  • 8E Bleszynski, M Bleszynski, and T Jaroszewicz. AIM:adaptive integral method for solving large-scale electromagnetic scattering and radiation problems [J]. Radio Sci., 1996,31(10): 1225~1251. 被引量:1
  • 9R Coifman, V Rokhlin, and S Wandzura. The fast multipole method for the wave equation: A pedestrian prescription [J]. IEEE Antennas Propagat. Mag. ,1993,35(7) :7~12. 被引量:1
  • 10J M Song, C C Lu, and W C Chew. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects [J]. IEEE Trans. Antennas Propagat. , 1997, 45(10): 1488 ~1493. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部