期刊文献+

Finite dimensional global and exponential attractors for a class of coupled time-dependent Ginzburg-Landau equations 被引量:2

Finite dimensional global and exponential attractors for a class of coupled time-dependent Ginzburg-Landau equations
原文传递
导出
摘要 We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover.First,we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phase-space which possesses a global attractor.Then we establish the existence of an exponential attractor.As a consequence,we show that the global attractor is of finite fractal dimension. We study a coupled nonlinear evolution system arising from the Ginzburg-Landau theory for atomic Fermi gases near the BCS (Bardeen-Cooper-Schrieffer) -BEC (Bose-Einstein condensation) crossover. First, we prove that the initial boundary value problem generates a strongly continuous semigroup on a suitable phasespace which possesses a global attractor. Then we establish the existence of an exponential attractor. As a consequence, we show that the global attractor is of finite fractal dimension.
出处 《Science China Mathematics》 SCIE 2012年第1期141-157,共17页 中国科学:数学(英文版)
基金 partially supported by National Natural Science Foundation of China (Grant No.11001058) Specialized Research Fund for the Doctoral Program of Higher Education the Fundamental Research Funds for the Central Universities
关键词 time-dependent Ginzburg-Landau equations BCS-BEC crossover global attractor exponentialattractor Ginzburg-Landau方程 指数吸引子 Ginzburg-Landau理论 时间依赖性 耦合 有限维 初始边界值问题 强连续半群
  • 相关文献

参考文献22

  • 1Baranov M A, Petrov D S. Low-energy collecive excitations in a superfluid trapped Fermi gas. Phys Rev A, 2000, 62: 041601(R). 被引量:1
  • 2Berti V, Gatti S. Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations. Quart Appl Math, 2006, 64:617-639. 被引量:1
  • 3Chen S H, Guo B L. Solution theory of the coupled time-dependent Ginzburg-Landau equations. Int J Dyn Syst Diff Equ, 2009, 2:1-20. 被引量:1
  • 4Chen S H, Guo B L. Existence of the weak solution of coupled time-dependent Ginzburg-Landau equations. J Math Phys, 2010, 51:033507. 被引量:1
  • 5Chen S H, Guo B L. Classical solutions of time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCS-BEC crossover. Preprint, 2009. 被引量:1
  • 6Drechsler M, Zwerger W. Crossover from BCS-superconductivity to Bose-condensation. Ann Phys, 1992, 1:15-23. 被引量:1
  • 7Eden A, Foias C, Nicolaenko B, et al. Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics. Providence, RI: Masson, 1994. 被引量:1
  • 8Efendiev M, Miranville A, Zelik S. Exponential attractors for a nonlinear reaction-diffusion system in N:3. C R Acad Sci Paris, 2000, 330:713-718. 被引量:1
  • 9Efendiev M, Miranville A, Zelik S. Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc Roy Soc Edinburgh Sect A, 2005, 135:703-730. 被引量:1
  • 10Fabrie P, Galusinski C, Miranville A, et al. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete Contin Dyn Syst, 2004, 10:211-238. 被引量:1

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部