期刊文献+

碳酸化钢渣复合胶凝材料早期水化活性 被引量:26

Early Hydration Activity of Composite with Carbonated Steel Slag
原文传递
导出
摘要 通过调节初始加水量控制钢渣的碳酸化效果(碳酸化质量增加率),利用胶砂强度试验法测定碳酸化钢渣的活性指数,以及分析硬化浆体矿物相和微观形貌,研究碳酸化钢渣水泥水化活性。结果表明:随着初始加水量的增加,碳酸化质量增加率先增加后降低;钢渣中的游离氧化钙(f-CaO)含量经碳酸化后,由3.92%降至1.11%;加水量为19%的钢渣经碳酸化后,生成15.95%的CaCO3;碳酸化质量增加率相同时,加水量为11.8%的碳酸化钢渣3、28 d活性指数较21%加水量的分别高49%和5%。在初始加水量为19%时,碳酸化钢渣3、28 d活性指数为最大值,较未碳酸化钢渣水化活性可提高97%和16%;碳酸化生成的CaCO3与水泥中的C3A反应生成水合碳铝酸钙。 By adjusting the initial water content to control the carbonative level of steel slag (C02 mass gain), we used a mortar strength test method to measure the activity index of carbonated steel slag, and analyzed the mineral phases and morphology of hard- ened paste to understand the hydration activity of steel slag cement. The results show that the CO2 mass gain increases first and then decreases with increasing the initial water content. The content of free-CaO decreased from 3.92% to 1.11% after carbonated steel slag. The steel slag with 19% water was carbonated, generating CaCO3 of 15.95%. At the same of CO2 mass gain, the 3 d and 28 d activity indexes at the initial water content of 11.8% were higher than those at other initial water contents (i.e., 5%, 21% and 49%, respectively). Compared to the uncarbonated steel slag, the 3 d and 28 d activity indexes of carbonated steel slag could be increased by 97% and 16% at the initial water content of 19%. CaCO3 generated due to the carbonation reacted with C3A in hydrated cement, which could produce calcium carboaluminate hydrate.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2012年第2期226-233,共8页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51172096) 教育部留学回国人员科研启动基金资助
关键词 钢渣 碳酸化 活性指数 水化产物 早期水化活性 水合碳铝酸钙 steel slag carbonated activity index hydration products early hydration activity calcium carboaluminate hydrate
  • 相关文献

参考文献17

二级参考文献50

  • 1侯贵华,李伟峰,郭伟,陈景华,罗驹华,王京刚.转炉钢渣的显微形貌及矿物相[J].硅酸盐学报,2008,36(4):436-443. 被引量:99
  • 2杨华山,方坤河,涂胜金,杨惠芬.石灰石粉在水泥基材料中的作用及其机理[J].混凝土,2006(6):32-35. 被引量:97
  • 3BERTOS M Femllndez, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2 [J]. J Hazardous Mater, 2004, 112(1): 193-205. 被引量:1
  • 4WU Haoze, CHANG Jun. Carbonate steelmaking slag to manufacture building materials [J]. Adv Mater Res, 2009, 79(1): 1943-1946. 被引量:1
  • 5印永嘉.物理化学简明教程[M].北京:高等教育出版社,2002:120-190. 被引量:2
  • 6Helal M A. Effect of curing time on the physicomechanical characteristics of the hardened cement pastes containing limestone [J]. Cement and Concrete Research, 2002, 32(3): 447-450. 被引量:1
  • 7Voglis N, Kakali G, Chanitakis E. Portland-limestone cements: Their properties and hydration compared to those of other composite cements [J]. Cemment and Concrete Composites, 2005,27(2):191-196. 被引量:1
  • 8Lothenbach B, Saout G L, Gallucci E. Influence of limestone on the hydration of Portland cements [J]. Cement and Concrete Research, 2008, 38(6):848-860. 被引量:1
  • 9Pipilikaki P, Beazi-Zatsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes [J]. Construction Building Materials, 2009,23(5):1966-1970. 被引量:1
  • 10Darweesh H H M. Limestone as an accelerator and filler in limestone-substituted alumina cement[J]. Ceramics International, 2004,30 (2):145-150. 被引量:1

共引文献194

同被引文献228

引证文献26

二级引证文献194

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部