期刊文献+

一种实时有效的蜂群模式挖掘算法 被引量:4

Efficient algorithm for real-time mining swarm patterns
原文传递
导出
摘要 针对实时相关运动模式挖掘应用的需求,提出了一种实时地发现关闭蜂群模式的簇重组算法(CLUR).该算法维护一个候选蜂群模式列表,在每个时间戳采用基于密度的聚类算法对移动目标进行聚类,根据聚类结果组合所有的最大移动目标集,记录相应的时间集,然后构建候选蜂群模式,并更新到候选列表.算法给出了三种更新规则和一种插入规则,用于实现候选蜂群模式列表的更新,同时降低了候选列表的冗余度,提高了算法的效率.在每个时间戳结束时可通过关闭检测规则实时地发现当前时刻的关闭蜂群模式.在合成数据上的综合实验验证了CLUR算法的正确性、实时性和高效性,CLUR算法适用于实时相关运动模式挖掘系统. Due to urgent demands for real time relative motion patterns mining applications, an efficient cluster-recombinant (CLUR) algorithm for real time discovering closed swarm patterns was proposed. The algorithm maintains a candidate swarm list, and at each timestamp carries out cluster analysis on moving objects using the clustering algorithm based on density, and according to the clustering results it recombines the maximum moving object set and records the corresponding maximum time set, further constructs a candidate swarm pattern and then finally updates the candidate swarm list up to date by using three update rules and an insert rule. The rules greatly reduce the redundancy of the candidate list and improve the efficiency of the algorithm. At the end of each timestamp, the current closed swarm patterns can be real time obtained by closuring checking rules. Comprehensive empirical studies on large synthetic data demonstrate the correctness, real time and efficiency of the CLUR algorithm. The CLUR algorithm can be applicable to real time relative motion pattern mining systems.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第1期37-42,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(61172049 61003251) 教育部博士点基金项目(20100006110015)
关键词 数据挖掘 轨迹 聚类算法 簇重组 实时系统 data mining trajectories clustering algorithms cluster recombination real time systems
  • 相关文献

参考文献16

  • 1谢幸.挖掘物理世界中的智能[J].中国计算机学会通讯,2010,6(11):33-33. 被引量:1
  • 2Han J W, Li Z 14, Tang L A. Mining moving object and traffic da- ta/! Proceeding of 2010 International Conference on Database Sys- tems for Advanced Applications. Tsukuba, 2010:1. 被引量:1
  • 3Laube P, Kreveld M, Imfeld S. Finding REMO: detecting relative motion patterns in geospatial lifelines//Proceeding of the 11 th In- ternational Symposium on Spatial Data Handling. Heidelberg, 2004 : 201. 被引量:1
  • 4Li Z I-I, Ding B L, Han J W, et al. Swarm: mining relaxed tem- poral moving object clusters//Proceeding of the 36th International Conference on very Large Data Bases. Singapore, 2010:13. 被引量:1
  • 5Benkett M, Gudmundsson J, Htlbner F, et al. Reporting flock patterns. Comput Geom Theory Appl, 2008, 41 (3) : 111. 被引量:1
  • 6Andersson M, Gudmundsson J, Laube P, et al, Reporting leaders and followers among trajectories of moving point objects. GeoiJbr- matica, 2008, 12(4) : 497. 被引量:1
  • 7Kalnis P, Mamoulis N, Bakiras S. On discovering moving clusters in spatio-temporal data//Proceeding of the 9th International Sym- posium on Spatial and Temporal Databases. New York, 2005 : 364. 被引量:1
  • 8Jeung H, Yiu M L, Zhou X F, et al. Discovery of convoys in traj- ectory databases//Proceeding of 34th International Cor~brence on very Large Data Bases. New York: ACM Press, 2008 : 8. 被引量:1
  • 9Yi B K, Jagadish H V, Christos F. Efficient retrieval of similar time sequences under time warping // Proceeding of the 14th International Conference on Data Engineering. Orlando, 1998: 201. 被引量:1
  • 10Michail V, Marios H, Dimltrios G, et al. Indexing multi-dimen- sional time-serles with support for multiple distance measures // Proceeding of the 9th ACM SIGKDD Conference on Knowledge Dis- covery and Data Mining. New York, 2003:216. 被引量:1

同被引文献36

  • 1李勃,陈启美.基于监控视频的运动车辆行为分析算法[J].仪器仪表学报,2006,27(z3):2118-2120. 被引量:13
  • 2唐卫涛,刘舒莳,董绪荣.基于智能手机的车辆导航监控系统[J].仪器仪表学报,2006,27(z3):1986-1988. 被引量:5
  • 3桂智明,向宇,李玉鉴.基于出租车轨迹的并行城市热点区域发现[J].华中科技大学学报(自然科学版),2012,40(S1):187-190. 被引量:21
  • 4PAPADIAS D, TAO Y, MOURATIDIS K, et al. Aggregate nearest neighbor queries in spatial databases [ J ]. ACM TODS,2005,30(2) : 529-576. 被引量:1
  • 5KOLAHDOUZAN M, SHAHABI C. Voronoi-Based K nearest neighbor search for spatial network databases [ C ]. 30th VLDB Conference, Toronto, Canada, 2004 : 840-851. 被引量:1
  • 6CHEN Z B,SHEN H T,et al. Searching trajectories by lo- cations-an efficiency study [ C ]. The 2010 ACM Sigmod Conference, Indianapolis, USA, 2010. 被引量:1
  • 7TANG L AN,ZHENG Y, XIE X, et al. Retrieving k -Nea- rest neighboring trajectories by a set of point locations [ C]. 12th International Symposium on Spatial and Tem- poral Databases ,2011. 被引量:1
  • 8LEE J G, HAN J W. Trajectory clustering: A partition- and-group framework[ C]. The 2007 ACM SIGMOD Con- ference, New York : ACM Press ,2007. 被引量:1
  • 9LI ZH H, LEE J G, LI X L, et al. Incremental clustering for trajectories [ C ]. 2010 International Conference on DASFAA, Tsukuba, Japan, 2010. 被引量:1
  • 10LI Y F, HAN J W, YANG J. Clustering moving objects [ C ]. The Conference on SIGKDD. Seattle. USA. 2004. 被引量:1

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部