期刊文献+

风力-生物质能联合发电系统在微电网中的扩展规划 被引量:5

Expansion planning of wind-biomass cogenerating system in the micro-grid
下载PDF
导出
摘要 提出了基于改进遗传算法的风力-生物质能联合发电系统在微电网中的扩展规划模型,在寻求总成本最小的扩展方案的同时,使微电网可靠性更高,而且满足系统规划和运行的非线性约束条件。在规划总成本中,不但包含机组投资的建设费用和运行费用,而且把电力供给不足所导致的需求侧停电损失成本也考虑在内。在模型中采用了适应性权重和方法构造双目标函数,很好地协调了成本和可靠性的问题。计算表明,文章所提出的模型和算法是可行、有效的,能对智能电网和分布式发电的规划和设计提供一定的理论依据和技术支持。 The model of wind-biomass co-generation system planning based on improved genetic algorithm is proposed in the paper. And seeking the the minimum total cost of expansion plan to ensure the micro-grid more reliabile meanwhile .and the system planning and operation of nonlin- ear constraints was satisfied. In the total cost of planning, it not only raked account of construction cost and operation cost of the investment plan, but also considerd the outage losses which is caused by power supply deficency. In the model, the method of adaptive weight and construction dual ob- jective function were used to solve the compatibility issues of cost and reliability. It showed that, the proposed model and algorithm are feasible ,which could provide some theoretical basis and technical suppot for the plannig and design of smart grid and dustributed generation.
出处 《可再生能源》 CAS 北大核心 2012年第1期42-46,共5页 Renewable Energy Resources
基金 国家科技攻关计划(JS20080113506594) 教育部博士点基金(20070610109)
关键词 微电网 风力-生物质能联合发电系统 扩展规划 适应性权重和 改进遗传算法 micro -grid wind -biomass co -generation system expansion planning sum ofadaptive weighted improved genetic algorithm
  • 相关文献

参考文献10

二级参考文献103

共引文献712

同被引文献70

  • 1丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:218
  • 2丁明,吴义纯.基于改进遗传算法的风力-柴油联合发电系统扩展规划[J].中国电机工程学报,2006,26(8):23-27. 被引量:31
  • 3CELLI G,PILO F. Optimal distributed generation allocation in MV distribution networks[C]//IEEE Power Industry Computer Applications Conference. Michigan,America:The University of Michigan, 2001 : 81-86. 被引量:1
  • 4TENG J H,LUOR T S,LIU Y H. Strategic distributed generator placements for service reliability improvements [C ]//IEEE Power Engineering Society Transmission and Distribution Conference. New York,America:Cornell University,2002:719-724. 被引量:1
  • 5WANG C,NEHRIR M H. Analytical approaches for optimal place- ment of distributed generation sources in power systems [J]. IEEE Transactions on Power Systems,2004,19(4):2068-2076. 被引量:1
  • 6EL-KHATTAM W,HEGAZY Y G,SALAMA M M A. An inte- grated distributed generation optimization model for distribution system planning[J]. IEEE Transactions on Power Systems,2005,20 (2) : 1158-1165. 被引量:1
  • 7NOVOA C,JIN Tongdan. Reliability centered planning for dis- tributed generation considering wind power volatility[J]. Electric Power Systems Research,2011,4(4) : 1654-1661. 被引量:1
  • 8GEEM Z W,KIM G H,LOGANATHAN G V. A new heuristic optimization algorithm:harmony search[J]. Simulation,2001,76 (2) :60-68. 被引量:1
  • 9Dennis B C, Byron W C. Optimal dispatch strategy in remote hybrid power systems[J]. Solar Energy, 1996, 58(4-6): 165-179. 被引量:1
  • 10Luna-Rubio R, Trejo-Perea M, Vargas-Vazquez D, et al. Optimal sizing of renewable hybrids energy systems: a review of methodologies[J]. Solar Energy, 2012, 86(4): 1077-1088. 被引量:1

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部