期刊文献+

正交模糊k平面聚类算法 被引量:3

Orthogonal Fuzzy k-Plane Clustering Algorithm
原文传递
导出
摘要 在模糊k平面聚类(KPC)算法的基础上,通过引入正交约束提出正交模糊k平面聚类算法(OFKPC).与KPC及模糊KPC(FKPC)类似,OFKPC仍从原型出发,用k组超平面替代传统的点(类中心)作为聚类原型.同时根据KPC及FKPC的思想,中心超平面是用来尽量区分不同类样本,因此这些超平面法向量构成的矩阵可用来进行特征降维.在人工数据集和UCI数据集上实验表明,OFKPC算法不仅较FKPC算法有更好的聚类效果,且具有更强的特征降维能力. A clustering algorithm named Orthogonal Fuzzy k-Plane Clustering (OFKPC) is presented by introducing orthogonal restriction into Fuzzy k-Plane Clustering (FKPC). Similar to KPC and FKPC, OFKPC still uses k group hyperplanes as the prototypes of cluster centers. According to the idea of KPC and FKPC, the hyperplanes are built to distinguish samples in different classes. So the matrices constructed by the normal vectors of these hyperplane,s can be used to reduce dimensionality. Experimental results on both artificial and UCI datasets show that OFKPC not only has better clustering results than FKPC but also has the ability of reducing dimensionality.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期783-791,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60903100 60975027) 江苏省普通高校研究生科研创新计划项目(No.CXZZ11_0483)资助
关键词 k平面聚类(KPC) 模糊k平面聚类(FKPC) 正交模糊k平面聚类 降维 k-Plane Clustering (KPC), Fuzzy k-Plane Clustering, Reducing Dimensionality Clustering (FKPC), Orthogonal Fuzzy k-Plane
  • 相关文献

参考文献18

  • 1Webb A R. Statistical Pattern Recognition. 2nd Edition San Fran- cisco, USA: John Wiley & Sons, 2002. 被引量:1
  • 2Anderberg M R. Cluster Analysis for Applications. New York, USA : Academic Press, 1973. 被引量:1
  • 3de SO Marques J P. Pattern Recognition Concepts, Methods and Applications. New York, USA: Springer, 2001. 被引量:1
  • 4Huang Zhexue. A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining//Proc of the SIGMOD Work- shop on Research Issues on Data Mining and Knowledge Discovery. Tucson, USA, 1997: 146- 151. 被引量:1
  • 5Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA : Kluwer Academic Publishers, 1981. 被引量:1
  • 6Lyer N S, Kandel A, Schneider M. Feature-Based Fuzzy Classifica- tion for Interpretation of Mammograms. Fuzzy Sets and Systems, 2000, 114(2) : 271 -280. 被引量:1
  • 7Yang M S, Hu Y J, Lin K C, et al. Segmentation Techniques for Tissue Differentiation in MRI of Ophthalmology Using Fuzzy Cluste- ring Algorithm. Journal of Magnetic Resonance Inmging.. 2002, 20(2) :173 - 179. 被引量:1
  • 8Bradley P S, Mangasarian O L. k-Plane Clustering. Journal of Glob- al Optimization, 2000, 16( 1 ) : 23 -32. 被引量:1
  • 9王颖,陈松灿,张道强,杨绪兵.模糊k-平面聚类算法[J].模式识别与人工智能,2007,20(5):704-710. 被引量:5
  • 10Duchene J, Leclercq S. An Optimal Transformation for Discrimi- nant and Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10 (6) : 978 -983. 被引量:1

二级参考文献40

  • 1杨颖,韩忠明,杨磊.兴趣子空间挖掘算法在高维数据聚类中的应用[J].计算机工程,2007,33(2):12-14. 被引量:3
  • 2Jain A K, Dubes R C. Algorithms for Clustering Data. Englewood Cliffs, USA: Prentice Hall, 1988. 被引量:1
  • 3Duda R O, Hart P E. Pattern Classification and Scene Analysis. New York, USA: Wiley, 1973. 被引量:1
  • 4Hartigan J. Clustering Algorithms. New York, USA: Wiley, 1975. 被引量:1
  • 5Everitt B S. Cluster Analysis. London, UK: Edward Arnold, 1993. 被引量:1
  • 6Anderberg M R. Cluster Analysis for Applications. New York, USA: Academic Press, 1973. 被引量:1
  • 7Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA: Kluwer Academic Publishers, 1981. 被引量:1
  • 8Belacel N, Hansen P, Mladenovic N. Fuzzy J-Means: A New Heuristic for Fuzzy Clustering. Pattern Recognition, 2002, 35 (10) : 2193-2200. 被引量:1
  • 9Zahid N, Abouelala O, Limouri M, et al. Fuzzy Clustering Based on K-Nearest-Neighbours Rule. Fuzzy Sets and Systems, 2001, 120(2): 239-247. 被引量:1
  • 10Bradley P S, Mangasarian O L. k -Plane Clustering. Journal of Global Optimization, 2000, 16(1): 23-32. 被引量:1

共引文献13

同被引文献15

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部