期刊文献+

分数阶反应-子扩散方程的高阶隐式差分格式及其稳定性分析 被引量:1

A High-Order Implicit Difference Scheme and Its Stability Analysis for the Fractional Reaction-Subdiffusion Equation
下载PDF
导出
摘要 针对一类带初边值条件的分数阶反应-子扩散方程,构造了一种新的高阶隐式差分格式,其局部截断误差为O(τ1+γ+τγh4).并对格式的可解性做了分析.利用Fourier方法证明了格式的无条件稳定性.最后通过做数值算例去验证理论分析是有效可靠的.从所给的数值结果可以得出,该格式具有非常高的精度. A kind of fractional reaction-subdiffusion equation with initial-boundary conditions is considered. A new high-order implicit difference scheme with local truncation error D( τ^1+γ,τγh^4) is constructed. The solvability of the scheme is analyzed. By means of Fourier method, the unconditional stability of the scheme is proved. Finally, a numerical example is given to verify the effectiveness of the theoretic analysis. The numerical results show that this scheme is of high accuracy.
作者 梁娜 叶超
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2011年第6期6-11,共6页 Journal of Natural Science of Hunan Normal University
关键词 分数阶反应-子扩散方程 Riemann—Liouville分数阶导数 隐式差分格式 稳定性 fractional reaction-subdiffusion equation Riemann-Liouville fractional derivative implicit differ- ence scheme stability
  • 相关文献

参考文献12

  • 1METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: a fractional dynamics approach [ J ]. Phys Rep, 2000, 339 ( 1 ) : 1-77. 被引量:1
  • 2MACHADO J T, KIRYAKOVA V, MAINARDI F. Recent history of fractional calculus [ J ]. Commun Nonlinear Sci Numer Simulat. 2011. 16(3) :1140-1153. 被引量:1
  • 3PODLUBNY I. Fractional differential equations [ M ]. San Diego : Academic Press, 1999. 被引量:1
  • 4LIU J Y, XU M Y. Some exact solutions to Stefan problems with fracional differential equations[J]. J Math Anal Appl, 2009, 351 (2) ,536-542. 被引量:1
  • 5LIANG J R, REN F Y, QIU W Y, et al. Exact solutions for nonlinear fractional anomalous diffusion equations[J]. Physica A, 2007, 385(1) :80-94. 被引量:1
  • 6张颖超.用径向基函数解偏微分方程[J].湖南师范大学自然科学学报,2011,34(5):1-6. 被引量:3
  • 7颜宝平.一类倒向随机微分方程解的比较定理[J].湖南师范大学自然科学学报,2011,34(4):26-28. 被引量:1
  • 8CHEN C M, LIU F, TURNER I, etal. A Fourier method for the fractional diffusion equation describing sub-diffusion [ J ]. J Comput Phys, 2007, 227 (2) : 886-897. 被引量:1
  • 9ZHUANG P, LIU F, AHN V, et al. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. Siam J Numer Anal, 2008, 46(2) :1079-1095. 被引量:1
  • 10CUI M R. Compact finite difference method for the fractional diffusion equation [ J ]. J Comput Phys, 2009,228 (20) :7792- 7804. 被引量:1

二级参考文献21

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部