期刊文献+

一种快速离散小波变换算法及其在语音信号中的应用 被引量:5

Fast discrete wavelet transform and its application to speech signal processing
下载PDF
导出
摘要 随着小波分析的理论研究水平不断提高,其应用领域也在不断扩展。特别是其多分辨率分析和Mallat算法在数字信号处理和数字通信中得到了广泛的应用。但是如果直接按照上述算法计算信号的小波分解和重构,其计算量将是很大的。通过对实序列的快速傅里叶变换(FFT)算法的推导及Mallat算法原理的分析,根据离散小波变换算法结构特征,提出了一种基于FFT的快速离散小波变换算法,并从数学理论上进行了论证。同时把该算法应用到实际的语音信号处理中,得到了很好的快速分解和重构效果。 With the research standard of wavelet analysis improving,the application field of the wavelet transform is keeping spreading.Especially it is widely used in digital signal processing and digital communication because of its multi-resolu- tion analysis and Mallat algorithm.However, if the signal decomposition and reconstruction is calculated based on the above-mentioned algorithm, the computational complexity will be very large, and the timely processing of signal will be affected.On the basis of analyzing the principle of Mallat algorithm principle,by deriving the real signal Fast Fourier Transform (FFT) algorithm,a fast wavelet transform algorithm based on FFT is proposed in terms of discrete wavelet transform structure in this paper.This algorithm is testified well from mathematical theory.Meanwhile, the proposed fast algorithm is applied to the speech signal processing,and fast decomposition and reconstruction result is obtained well.
作者 徐伟业
出处 《计算机工程与应用》 CSCD 北大核心 2011年第35期143-146,149,共5页 Computer Engineering and Applications
基金 南京工程学院科研基金项目(No.QKJB2009019)
关键词 快速傅里叶变换 快速离散小波变换 多分辨率分析 信号分解和重构 语音信号处理 Fast Fourier Transform(FFT) fast discrete wavelet transform multi-resolution analysis decomposition and reconstruction speech signal processing
  • 相关文献

参考文献16

二级参考文献130

共引文献95

同被引文献49

  • 1张军华,吕宁,田连玉,陆文志,钟磊.地震资料去噪方法技术综合评述[J].地球物理学进展,2006,21(2):546-553. 被引量:152
  • 2李彩芹,张华.小波变换与F-K联合滤波在面波分离中的应用[J].中国煤田地质,2007,19(4):60-61. 被引量:11
  • 3Mallat S. A Wavelet Tour of Signal Processing[M].北京:机械工业出版社,2003. 被引量:2
  • 4RoseJ L, NesteworthJ, Balasubramaniam K.Utility of feature mapping in ultrasonic non-destructive evaluation[J].Ultrason?ics, 1988,26(8): 124-131. 被引量:1
  • 5Mulvaney R, Dhananjay S P.Generalized haar DWT and transformations between decision trees and neural networks[J]. IEEE Transactions on Neural Networks, 2006, 17 ( 1) : 81-93. 被引量:1
  • 6Yu Sung-Nien , Chen Ying-Hsiang.Electrocardiogram beat classi?fication based on wavelet transformation and probabilistic neural network[J].Pattern Recognition Letters, 2007,28 ( 10) : 1142-1150. 被引量:1
  • 7Sambath S, Nagaraj P, Selvakumar N.Automatic defect classi?fication in ultrasonic NDT using artificial intelligence[J].Journal of Nondestructive Evaluation, 20 II , 30( 1 ) : 20-28. 被引量:1
  • 8Saleh SA, Rahman M A.Real-time testing of a WPT-based protection algorithm for three-phase power transformers[J]. IEEE Transactions on Industry Applications, 2005, 41 (4) : 1125-1132. 被引量:1
  • 9WuJ, Liu C.An expert system for fault diagnosis in inter?nal combustion engines using wavelet packet transform and neural network[J].Expert Systems with Applications, 2009,36 (3) : 4278-4286. 被引量:1
  • 10Chen Yuan.Ma Hongwei.Application of Artificial neural net?work to flaw classification in ultrasonic testing[J].Advanced Materials Research,2011 ,328(3): 1876-1880. 被引量:1

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部