期刊文献+

基于多尺度静态小波分解的改进型CFAR船只检测算法 被引量:2

An Improved CFAR Ship Detection Algorithm Based on Multi-scale Stationary Wavelet Transform
下载PDF
导出
摘要 SAR船只目标检测是实现海上安全监测的有效手段。由于在海杂波较为复杂的情况下,传统CFAR算法对于弱小船只检测效果不佳,本文提出了基于多尺度静态小波分解的改进型CFAR检测算法。首先通过实验选出最优小波基及最佳小波分解级数,再利用幂运算对经多尺度乘性增强的小波系数进行优化,以增强船只与海洋背景的对比度,从而运用简单的CFAR算法即可得到较好的检测效果。最后,以新型星载ALOS-PALSAR数据为例,通过与传统CFAR算法的对比实验,验证本文算法的有效性。实验表明,利用Sym2最优小波基的较强边缘检测能力以及小波多尺度乘性增强,双重强化了船只目标的边缘影像特征,并有效抑制了海杂波噪声,使得本文算法在提高检测率与降低虚警率两方面都优于传统CFAR算法,有利于高海杂波下弱小船只的检测。 Ship detecting using SAR image is an effective method of maritime safety monitoring.The common CFAR algorithm has a low detection performance of dim ship targets detection in high sea clutter.In this paper,an improved CFAR ship detection algorithm based on multi-scale stationary wavelet transform is proposed.Firstly,the optimal wavelet basis and decomposition level of wavelet transformation are chosen by experiments.Then the strengthened high frequency wavelet coefficients by multi-scale product are optimized using the exponentiation algorithm so as to increase the sea clutter to ship ratio of SAR images.After that a better detection result can be made using a simple CFAR algorithm.At the end,to verify the proposed algorithm,a comparison experiment with common CFAR algorithm is done using new satellite ALOS-PALSAR data.The experiment shows that the edge of ship can be double strengthened by Sym2-the optimal wavelet basis-and multi-scale product,and therefore the speckle is depressed.The proposed algorithm excels common CFAR algorithm in two aspects of increasing the detection and reducing the false alarm,which has better detection performance on dim ships in high sea clutter.
出处 《遥感信息》 CSCD 2010年第2期73-78,共6页 Remote Sensing Information
基金 国家自然科学基金(40871191 40601058 40701108)
关键词 船只目标检测 SAR CFAR 静态小波 最优小波基 ship detection SAR CFAR stationary wavelet optimal wavelet basis
  • 相关文献

参考文献14

  • 1Greidanus,H.,Aresu,E.Sub-aperture analysis for ship detection[A].The Fourth Meeting of the DECLIMS Project[C].Toulouse,France,2005. 被引量:1
  • 2Vachon P W,Thomas S J.Validation of ship detection by the radarsat synthetic aperture radar and the ocean monitoring workstation[J].Canadian Journal of Remote Sensing,1999,25(1):112-123. 被引量:1
  • 3Kerbaol,V,Hajduch,G.Surveillance of coastal and marine offshore areas using satellite imagery[A].The Fifth Meeting of the DECLIMS Project[C].Farnborough,UK,2005. 被引量:1
  • 4Losekoot,M,Cauzac,J.-P.Update on Kerguelen station operations[R].The fourth meeting of the DECLIMS project,Toulouse,France,2005. 被引量:1
  • 5Tello,M.López-Martínez,C.Mallorqui,J.J.A novel algorithm for automatic ship and oil spill detection based on time-frequency methods.advances in SAR oceanography from envisat and ERS missions[A].Proceedings of SEASAR[C].2006:23-26. 被引量:1
  • 6Chan-Su Yang,Kazuo Ouchi.Comparison of ship detectability using sar polarization data:envisat asar ap mode[A].IGARSS[C].2008. 被引量:1
  • 7Attilio Gambardella,Ferdinando Nunziata,Maurizio Migliaccio.A physical full-resolution SAR ship detection filter[A].IEEE GeosciencE and Remote Sensing LetterS[C].2008,5(4). 被引量:1
  • 8M.Migliaccio,A.Gambardella,F.Nunziata.Ship detection over single-Look complex SAR images[A].IEEE/OES,US/EU-Baltic International Symposium[C].2008. 被引量:1
  • 9罗强,罗莉,任庆利,何鸿君,杨万海.一种基于小波变换的卫星SAR海洋图像舰船目标检测方法[J].兵工学报,2002,23(4):500-503. 被引量:7
  • 10张风丽,吴炳方,张磊.基于小波分析的SAR图像船舶目标检测[J].计算机工程,2007,33(6):33-34. 被引量:12

二级参考文献39

  • 1杨文,陈嘉宇,孙洪,徐新.基于SAR图像的点状目标检测方法研究[J].电波科学学报,2004,19(3):362-366. 被引量:14
  • 2陈嘉宇,徐新,孙洪,管鲍.基于多分辨率统计能级的SAR图像点目标检测[J].系统工程与电子技术,2005,27(2):205-208. 被引量:1
  • 3任彬,汪炳权,罗斌.基于直方图指数平滑的阈值和峰点自动检测方法[J].中国图象图形学报(A辑),1997,2(4):230-233. 被引量:34
  • 4Rey M T, Drosopoulos T, Petrovic D. A search procedure for ships in RADARSAT imagery. DREO Report No. 1305,1996.42~45 被引量:1
  • 5Wahl T, Eldhuset K, Aksnes K. SAR detection of ship and ship wakes. Proceeding of the SAR Application Workshop. Hel Frascati Italy:1986.61~66 被引量:1
  • 6Mallat S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Analysis Machine Intelligence,1989,11(7):674~693 被引量:1
  • 7Burl M,Owirka G,Novak L.Texture Discrimination in Synthetic Aperture Radar Imagery[A].Proc.23rd Asilomar Conf.Signals,Systems,Computers[C].Pacific Grove,CA,1989. 被引量:1
  • 8Novak L,Halversen S,Owirka G,et al.Effects of Polarization and Resolution on SAR ATR[J].IEEE Trans.on Aerospace and Electronic Systems,1997,33(1):102-116. 被引量:1
  • 9Jiang Q,Wang S,Ziou D,et al.Automatic Detection for Ship Targets in RADARSAT SAR Images from Coastal Regions[A].Proc.Vision Interface[C].Qubbec,Canada,1999. 被引量:1
  • 10Rosenfeld A.A Nonlinear Edge Detection Technique[J].Proc.of the IEEE,1970,58(5):814-816. 被引量:1

共引文献27

同被引文献23

  • 1赵宏,马立彦,贾青.基于变异系数法的灰色关联分析模型及其应用[J].黑龙江水利科技,2007,35(2):26-27. 被引量:47
  • 2Vachon P W,English R A,Wolfe J.Validation of RA- DARS AT-1 vessel signatures with AISLive data[J].Ca- nadian Journal of Remote Sensing,2007,33(1):20-26. 被引量:1
  • 3Kayabol K,Krylov V A,Zerubia J.Unsupervised classi- fication of SAR images using hierarchical agglomeration and EM[M].Springer Berlin Heidelberg:Computation- alIntelligence for Multimedia Understanding,2012:54-65. 被引量:1
  • 4Niu X,Ban Y.An adaptive contextual SEM algorithm for urban land cover mapping using multitemporal high-reso- lution polarimetric SAR data[J].IEEE Journal of Select- ed Topics in Applied Earth Observations and Remote Sensing,2012,5(4):1129-1139. 被引量:1
  • 5Otsu N.A threshold selection method from gray-level his- tograms[J].Automatica,1975,11(285-296):23-27. 被引量:1
  • 6Al-Fawzan M A.Methods for estimating the parameters of the Weibull distribution[F].King Abdulaziz city for sci- ence and technology Saudi Arabia,2000. 被引量:1
  • 7Nicolas J M,Anfinsen S N.Introduction to second kind statistics:Application of log-moments and log-cumulants to analysis of radar images[J].Traitment du Signal,2002,19:139-167. 被引量:1
  • 8Krylov V,Moser G,Serpico S B,et al.Modeling the statistics of high resolution SAR images[F].Research Report,2008. 被引量:1
  • 9Finn H M,Johnson R S.Adaptive detection mode with threshold control as a function of spatially sampled clutter- level estimates[J].RCA review,1968,29:414-464. 被引量:1
  • 10Kuttikkad S,Chellappa R.Non-Gaussian CFAR tech- niques for target detection in high resolution SAR images[C]//Image Processing,1994.Proceedings.ICIP-94.,IEEE International Conference,1994,1:910-914. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部