期刊文献+

网络舆情话题的数据立方体模型分析

Data Cube Model Analysis of Online Public Opinion Topics
原文传递
导出
摘要 通过详细分析网络舆情组成要素,利用数据仓库技术,建立网络舆情话题数据立方体模型。该模型涵盖网络舆情的大部分组成要素,而且可以根据实际需要进行扩展。实际案例分析表明,应用该模型可以对网络舆情话题进行多角度、深层次的挖掘分析,分析结果能比较客观地反映网络舆情变化发展的规律和趋势,有助于全面地了解网络舆情话题,并为网络舆情预警提供必要的信息。 A data cube model of online public opinion topics is put forward with data warehouse technology. The data cube model contains the major components of online public opinion and can be easily extended according to the practical needs. Experimental results show that multiple points of view and deep degree mining can be done based on the data cube model. The analysis results can truly describe the developing and changing process of online public opinion, which is helpful to understand the online public opinion topic comprehensively with necessary information for online public opinion warning supported.
作者 陈焱
出处 《图书情报工作》 CSSCI 北大核心 2011年第24期75-79,131,共6页 Library and Information Service
基金 江西省社会科学规划项目"高校网络舆情分析与监测机制建设研究"(项目编号:10TW20)研究成果之一
关键词 网络舆情 舆情话题分析 数据立方体模型 网络舆情预警 online public opinion topic public opinion topic analysis data cube model online public opinion warning
  • 相关文献

参考文献17

  • 1美国的舆睛研究协金[2011-04-06].http://www.aapor.org/. 被引量:1
  • 2欧盟舆情分析中心.[2011-04-06].http://europa.eu.int/comm/public_opinion/index_en.htm. 被引量:2
  • 3Qi H W, Wang J. A model for mining outliers from complex data sets// Proceedings of ACM Symposium on Applied Computing. Canada: Toronto, 2004 : 595 - 599. 被引量:1
  • 4Pavel M, Mikhail A, Alexander G. Clustering Abstracts Instead of Full Texts//Proceedings of Text Speech and Dialogue. Japan: Tyko,2004 : 129 - 136. 被引量:1
  • 5Yamir M, Maziar N, Amalio F P. Dynamics of rumor spreading in complex networks. Physical Review, 2004,69 (6) : 1 - 7. 被引量:1
  • 6Inderjit S D, James F, Guan Y Q. Efficient clustering of very large document collections. In Data Mining for Scientific and Engineering Applications// Norwell: MA , 2001:357-381. 被引量:1
  • 7Gabriel P, Cheong F, Jeffrey X Y. Parameter Free Bursty Events Detection in Text Streams//Proceedings of the 31st International Conference on Very Large Databases. USA: New York,2005:181 -192. 被引量:1
  • 8Cao F, Martin E, Qian W N, et al. Density -based Clustering over an Evolving Data Stream with Noise//Proceedings of the SIAM Conference on Data Ming. China: Beijing, 2006 : 326 - 337. 被引量:1
  • 9郑魁,疏学明,袁宏永.网络舆情热点信息自动发现方法[J].计算机工程,2010,36(3):4-6. 被引量:44
  • 10王伟,许鑫.基于聚类的网络舆情热点发现及分析[J].现代图书情报技术,2009(3):74-79. 被引量:62

二级参考文献39

共引文献305

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部