期刊文献+

微弧氧化电压对钛基氧化膜成分及生物活性的影响 被引量:2

Influence of Microarc Oxidation Voltage on Composition and Bioactivity of Titanium Film
原文传递
导出
摘要 采用微弧氧化法在纯钛表面制备了多孔钛氧化膜并进行表征。室温条件下,采用200V至350V恒压模式以0.5mol/L磷酸溶液作为电解液进行微弧氧化实验。FESEM分析表明,不同电压下,微弧氧化法制备出的氧化膜层均为多孔结构,孔径分布随电压的升高而增大。XRD和XPS分析表明,在强烈的微弧放电过程中,纯钛表面生成了TiO2和TiP2O7,随着电压的增高,TiO2的结晶度和磷元素的含量逐渐升高。体外实验表明,羟基磷灰石的沉积主要归因于样品表面含有大量可分解成HPO24?的TiP2O7,HPO24?离子被吸附到样品表面成核。约4at%磷元素能促进羟基磷灰石的生成。 Multi-porous titanium dioxide films were prepared on pure titanium plates by micro-arc oxidation and the films were characterized.Micro-arc oxidation tests were carried out at room temperature and 0.5 mol/L H3PO4 used as electrolyte.Voltage was controlled as potentiostatic mode(200-350 V).Porous titanium dioxide layers are formed under all voltages but the morphological difference is obvious.The distribution of micro-pore size increases with increasing of the voltage.XRD and XPS analysis indicate that the micro-arc oxidized films are mainly composed of TiO2 and TiP2O7.With increasing of the applied voltage,both the TiO2 crystalline phase and the P content increase.The incubation results of the samples in simulated body fluid(SBF) show that HA(hydroxyapatite) formation is mainly due to the TiP2O7 resolved into.The ions are adsorbed in the sample surface as nuclear sites.The P content of about 4at% in the sample surface can hasten the apatite formation.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第11期1941-1945,共5页 Rare Metal Materials and Engineering
基金 科技部国际科技合作项目(2009DFA92551) 教育部重点科技项目(207091) 海南省教育厅高等学校科学研究项目(Hj2010-01) 海南省自然科学基金(50887,807021)
关键词 微弧氧化 二氧化钛 TiP2O7 多孔膜 micro-arc oxidation titanium dioxide TiP2O7 multi-porous film
  • 相关文献

参考文献20

  • 1Wang Y, Wang J, Zhang Jet al. Materials and Corrosion[J], 2005, 56(2): 88. 被引量:1
  • 2Nageh K Allam, Karthik Shankar, Craig A Grimes. Advance Material[J], 2008, 20:3492. 被引量:1
  • 3Long M, Rack H J. Biomaterials [J], 1998, 18:1621. 被引量:1
  • 4Lu Xiong, Wang Yingbo, Yang Xiudong et al. Journal of Biomedical Materials Research Part A [J], 2007, 84A(2): 523. 被引量:1
  • 5Ken Nishio, Masashi Neo, Haruhiko akiyama et al. Journal of Biomedical Materials Research[J], 2000, 52(4): 652. 被引量:1
  • 6Mandl S, Sader R, Krause D et al. Biomol Eng[J], 2002, 19(2): 129. 被引量:1
  • 7Naoki Tsukimura, Norinaga Kojima, Katsutoshi Kubo et al. Journal of Biomedical Materials Research Part A[J], 2007, 84A(1): 108. 被引量:1
  • 8Young-Taegsul S, Carina B Johansson, Yongsoo Jeong et al Medical Engineering & Physics[J] , 2001, 23(5): 329. 被引量:1
  • 9Li L H, Kong Y M, Kim H Wet al. Biomaterials[J], 2005 25(14): 2867. 被引量:1
  • 10Lin C S, Chen M T, Liu J H. Journal of Biomedical Materials Research Part A[J], 2008, 85(2): 378. 被引量:1

同被引文献33

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部