期刊文献+

集成学习在脑机接口分类算法中的研究 被引量:7

Research of ensemble learning in brain computer interface classification algorithm
下载PDF
导出
摘要 提出了一种基于独立分量分析的支持向量机集成学习算法,用于脑机接口中P300字符识别。首先由P300信号分解出独立分量,基于Bagging算法送入支持向量机基分类器进行集成学习,通过平均的方法获得对应类别概率进行分类决策。数据来源于P300字符拼写实验,不同导联和不同序列的分类结果表明,该分类算法学习效率和分类精度高,全导联平均分类精度为96.6%,在序列数较少的情况下,平均分类精度也达到91.5%。较其他算法,识别性能好,是脑机接口的实用分类算法。 Support vector machine ensemble learning algorithm based on independent component analysis is presented to apply for P300 speller in brain computer interface. Firstly, P300 signal is decomposed into independent components, an ensemble of classifiers approach is based on Bagging algorithm, each classifier is composed of SVM trained on a small part of available data. Secondly, it obtains corresponding classification probability and implements classification discriminant with classifier output averaging. The data are from P300 speller paradigm, classification results of different channels and sequences indicate that this algorithm yields better performance for efficiency and precision, classification performance for 64 channels is obtained for mean 96.6%, classification performance is also 91.5% for five sequences. Compared with other algorithms, this practical approach has achieved better performance for BCI classification.
出处 《电子测量与仪器学报》 CSCD 2011年第11期940-945,共6页 Journal of Electronic Measurement and Instrumentation
基金 上海高校选拔培养优秀青年教师科研专项基金(5108508001)
关键词 独立分量分析 支持向量机集成 BAGGING 脑机接口 brain computer interface support vector machine ensemble Bagging brain computer interface
  • 相关文献

参考文献13

二级参考文献68

共引文献53

同被引文献77

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部