摘要
讨论了生化反应中一个可逆三分子反应的数学模型x=A-(B+1)x+x~2y-x~3;y=Bx-x~2y+x~3,应用常微分方程定性方法进行了分析。得到系统的一切正初值的正半轨线有界;当B<2A~2+1时系统不存在极限环;当B>2A~2 +1时系统存在唯一稳定的极限环.
In this paper, a model in biochemical reaction is discussed : x = A - (B + 1)x + x^2y - x^3, y = Bx - x^2y + x^3, by means of the ordinary differential equation qualitative method, we obtain such conclusions as boundedness of solutions which initial value is in the first quadrant and the noexistance, existence and uniqueness of limit cycle.
出处
《生物数学学报》
CSCD
1999年第4期415-418,共4页
Journal of Biomathematics
基金
山西省自然科学基金
山西师大科研基金