期刊文献+

一类非线性SEIRS流行病传播数学模型 被引量:13

A kind of nonlinear SEIRS epidemic spread mathematic model
下载PDF
导出
摘要 目的 研究一类具有饱和接触率且潜伏期、染病期均传染的非线性SEIRS流行病传播数学模型动力学性质。方法 利用Lasalle不变集原理和Routh Hurwitz判据探讨系统的渐近性态。结果 得到了疾病绝灭与持续的阈值———基本再生数,证明了无病平衡点的全局渐近稳定性和地方病平衡点的局部渐近稳定性,揭示了潜伏期传染的影响。结论 潜伏期有传染的疾病,不但要注意控制染病期的病人,还要注意控制潜伏期的病人。只有这样,才能有效地控制疾病的蔓延。 Aim Dynamical behavior of a kind of nonlinear SEIRS model of epidemic spread with the saturated rate, which has infective force in both latent period and infected period, is studied.Methods The system′s asymptotic property is discussed by Lasalle invariant set principle and Routh-Hurwitz criterion.Results The threshold, Basic Reproductive Number, which determines whether the disease is extinct or not is gotten. The stabilities of the disease-free equilibrium and the endemic equilibrium are proved. The influence of infectivity in latent period is exposed.Conclusion In order to remove the disease which has infective force in latent period, it is necessary to control the patients not only in the infected period but also in the latent period. Only in this way, can the (disease′s) spread be effectively restrained.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期627-630,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(30170823)
关键词 饱和接触率 潜伏期 数学模型 阈值 Lasalle不变集 Routh-Hurwitz判据 saturating rate latent period mathematic model threshold Lasalle invariant set Routh-Hurwitz criterion
  • 相关文献

参考文献6

二级参考文献14

  • 1陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1998.. 被引量:7
  • 2[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721. 被引量:1
  • 3[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42. 被引量:1
  • 4[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356. 被引量:1
  • 5[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993. 被引量:1
  • 6[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380. 被引量:1
  • 7[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61. 被引量:1
  • 8[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975. 被引量:1
  • 9Thieme H R, Castillo-Chavez C. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS? [J]. Siam J Appl Math, 1993, 53(5): 1 447-1 479. 被引量:1
  • 10Feng Z, Iannelli M, Milner F A. A two-strain tuberculosis model with age of infection [J]. Siam J Appl Math, 2002,62(5):1 634-1 656. 被引量:1

共引文献94

同被引文献80

引证文献13

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部