期刊文献+

基于对数正态分布下联合均值与散度广义线性模型的极大似然估计 被引量:9

Maximum likelihood estimator for joint mean and dispersion in generalized linear models of the Lognormal distribution
下载PDF
导出
摘要 基于对数正态分布研究提出了联合均值与散度广义线性模型,给出了此模型参数的极大似然估计,模拟和实例显示该模型和方法是有用和有效的. The maximum likelihood estimator for joint mean and dispersion in generalized linear models of the Lognormal distribution is proposed.Simulation and practice show that this model and method are useful and effective.
作者 黄丽 吴刘仓
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2011年第4期379-389,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11026209) 云南省自然科学基金(2009ZC039M) 云南省教育厅科研基金(07L00001 09Y0080) 昆明理工大学博士科研启动基金(2009-024)
关键词 对数正态分布 联合均值与散度广义线性模型 极大似然估计 Lognormal distribution joint mean and dispersion in generalized linear models maximum likelihood estimator
  • 相关文献

参考文献8

  • 1Park R E. Estimation with heteroscedastic error terms[J]. Econometrica, 1966, 34: 888. 被引量:1
  • 2Doray L. IBNR Reserve under a loglinear location-scale regression model[J].Virginia: Casualty Actuarial Society Forum Casualty Actuarial Society Arlington,1994,2: 607-652. 被引量:1
  • 3Paul S R, Islam A S. Joint estimation of the mean and dispersion parameters in the analysis of proportions:a comparison of efficiency and bias[J]. The Canadian Journal of Statistics, 1998, 26: 83-94. 被引量:1
  • 4Verbyla A P. Variance heterogeneity: residual maximum likelihood and diagnostics[J]. Jour- nal of the Royal Statistical Society, Series B, 1993, 52: 493-508. 被引量:1
  • 5Jie Mi. MLE of paramenters of location-scale distribution for complete and partially grouped data[J]. Journal of Statistical Planning and Inference, 2006, 136: 3565-3582. 被引量:1
  • 6Taylor J T, Verbyla A P. Joint modelling of location and scale parameters of the t distribution[J]. Statistical Modelling, 2004, 4: 91-112. 被引量:1
  • 7Yageen T P, Sreekumar N V. Estimation of location and scale parameters of a distribution by U-statistics based on best linear function of order statistics[J]. Journal of Statistical Planning and Inference, 2008, 138: 2190-2200.. 被引量:1
  • 8韦博成编著..参数统计教程[M].北京:高等教育出版社,2006:409.

同被引文献45

  • 1Aitkin M. Modelling variance heterogeneity in normal regression using GLIM [J]. Journal of the Royal Statistical Society (Series C) (Applied Statistics), 1987, 36(3): 332-339. 被引量:1
  • 2Azzalini A. A class of distributions which includes the normal ones [J]. Scand. J. Statist., 1985, 12: 171-178. 被引量:1
  • 3Kotz S, Vicari D. Survey of developments in the theory of continuous skewed distributions [J]. International Journal of Statistics, 2005, 1: 225-261. 被引量:1
  • 4Xie F C, Wei B C, Lin J G. Homogeneity diagnostics for skew-normal nonlinear regression models [J]. Statistics and Probability Letters, 2009, 79(6): 821-827. 被引量:1
  • 5Cysneirosa F J A, Cordeirob G M, and Cysneiros A H M A. Corrected maximum likelihood esti- mators in heteroscedastic symmetric nonlinear models [J]. Journal of Statistical Computation and Simulation, 2010, 80(4): 451-461. 被引量:1
  • 6l Lachos V H, Bandyopadhyay D, Garay A M. Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions [J]. Statistics and Probability Letters, 2011, 81(8): 1208-1217. 被引量:1
  • 7Cook A D, Weisberg S. An Introduction to Regression Graphics [M]. New York: John WileySons, 1994. 被引量:1
  • 8Aitkin M. Modelling variance heterogeneity in normal regression using GLIM[J]. Applied Statistics, 1987, 36: 332-339. 被引量:1
  • 9Taylor J T, Verbyla A P. Joint modelling of location and scale parameters of the t distribution[J]. Statistical Modelling, 2004, 4: 91-112. 被引量:1
  • 10Harvey A C. Estimating regression models with multiplicative heteroscedasticity[J]. Econometrica, 1976, 44: 460-465. 被引量:1

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部