期刊文献+

基于博弈论的隐私保护分布式数据挖掘 被引量:8

Privacy Preserving Distributed Data Mining Based on Game Theory
下载PDF
导出
摘要 隐私保护的分布式数据挖掘问题是数据挖掘领域的一个研究热点,而基于经济视角,利用博弈论的方法对隐私保护分布式数据挖掘进行研究只是处于初始阶段。基于收益最大化,研究了完全信息静态博弈下分布式数据挖掘中参与者(两方或多方)的策略决策问题,得出了如下结论:数据挖掘在满足一定的条件下,参与者(两方或多方)的准诚信攻击策略是一个帕累托最优的纳什均衡策略;在准诚信攻击的假设下,参与者(多方)的非共谋策略并不是一个纳什均衡策略。同时给出了该博弈的混合战略纳什均衡,它对隐私保护分布式数据挖掘中参与者的决策具有一定的理论和指导意义。 Privacy preserving distributed data mining has become an important issue in the data mining.Based on economic perspectives,game theory has been applied to privacy preserving data mining,which is a relatively new area of research.This paper studied the strategies of parties(two-party or multi-party) by using a complete information static game theory framework for the privacy preserving distributed data mining,where each party tries to maximize its own utility.Research results show that the semi-honest adversary strategy of parties(two-party or multi-party) is Pareto dominance and Nash equilibrium under certain conditions in distributed data mining;and non-collusion strategy of parties(multi-party) is not a Nash equilibrium under the assumption of semi-honest adversary behavior,then the mixed strategy Nash equilibrium was given.So this paper has some theoretical and practical implication for the strategy of parties in privacy preserving distributed data mining.
出处 《计算机科学》 CSCD 北大核心 2011年第11期161-166,共6页 Computer Science
基金 教育部科学技术研究重点项目(109016) 北京市自然科学基金项目(4112053) 国家自然科学基金项目(60970143)资助
关键词 博弈论 隐私保护 分布式数据挖掘 Game theory Privacy-preserving Distributed data mining
  • 相关文献

参考文献11

  • 1Vaidya J S, Clifton C. Privacy preserving association rule mining in vertically partitioned data [C] // Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Disco very and Data Mining. 2002 : 639- 644. 被引量:1
  • 2Lindell Y,Pinkas B. Privacy preserving data mining [J]. Journa of Cryptology,2002,15(3) : 177 206. 被引量:1
  • 3Agrawal R, Srikant R. Privacy-preserving data mining[C]//Pro eeedings of the SIGMOD Conference on Management of Data. ACM Press, 2000 : 439-450. 被引量:1
  • 4Lindell Y, Pinkas B. Secure Multiparty Computation for Privacy preserving Data Mining [J]. Journal of Privacy and Confidentia lity,2009,1(1) :59- 98. 被引量:1
  • 5Clifton C, Kantarcioglu M, Vaidya J, et al. Tools for Privacy Preserving Distributed Data Mining [J]. ACM SIGKDD Explo rations, 2002,4 (2): 28-34. 被引量:1
  • 6张维迎著..博弈论与信息经济学[M].上海:上海人民出版社;上海,2004:364.
  • 7Kleinberg J, Papadimitriou C, Raghavan P. A microeconomic view of data mining [J]. Data Mining and Knowledge Discovery, 1998,2(4) :311-324. 被引量:1
  • 8Abraham I, Dolev D, Gonen R, et at Distributed computing meets game theory:Robust mechanisms for rationai secret sharing and multiparty computation[C]//Proceedings of the Twen ty-fifth Annual ACM Symposium on Principles of Distributed Computing. New York, USA: ACM Press, 2006:53-62. 被引量:1
  • 9Kargupta H, Das K, Liu K, Multi party, privacypreserving dis tributed data mining using a game theoretic framework [ J ]. PK DD, 2007,4702 : 523-531. 被引量:1
  • 10张国荣,印鉴.基于博弈论的安全多方求和方法[J].计算机应用研究,2009,26(4):1497-1499. 被引量:7

二级参考文献5

  • 1罗永龙,徐致云,黄刘生.安全多方的统计分析问题及其应用[J].计算机工程与应用,2005,41(24):141-143. 被引量:14
  • 2CLIFTON C, KANTARCIOGLU M, VAIDYA J ,et al. Tools for privacy preserving distributed data mining [ J ]. SIGKDD Explorations, 2002,4(2) :28-34. 被引量:1
  • 3BHADURI K, DAS K, KARGUPTA H. Peer-to-peer data mining, privacy issues, and games[ C ]//Lecture Notes in Computer Science, vol 4476. Berlin : Springer, 2007 : 1-10. 被引量:1
  • 4KARGUPTA H, DAS K, LIU K. A game theoretic approach toward muhi-party privacy-preserving distributed data mining, TR-CS-0701 [R]. [S. l. ] :UMBC,2007. 被引量:1
  • 5KARGUPTA H, DAS K, LIU K. Multi-party, privacy-preserving data mining using a game theoretic framework[ C ]//Proc of the 11 th European Conference on Principles and Practice of Knowledge Discovery in Databases ( PKDD' 07 ). Berlin, Heidelberg: Springer-Vedag, 2007 : 523-531. 被引量:1

共引文献6

同被引文献99

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部