摘要
This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme, we establish some existence results of traveling wave solutions. The results are applied to a nonlocal diffusion model which takes the three-species Lotka-Volterra model as its special case.
This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme, we establish some existence results of traveling wave solutions. The results are applied to a nonlocal diffusion model which takes the three-species Lotka-Volterra model as its special case.
基金
Supported by the Natural Science Foundation of China (11171120)
the Doctoral Program of Higher Education of China (20094407110001)
Natural Science Foundation of Guangdong Province (10151063101000003)