期刊文献+

一类非局部扩散竞争系统的行波解的存在性

Existence of Traveling Wave Solutions in Nonlocal Reaction-Diffusion System
下载PDF
导出
摘要 采用构造上下解交叉迭代的方法,证明了带有非局部扩散项以及时滞的反应扩散方程行波解的存在性,依此并将原有的关于Lotka-Volterra型竞争扩散模型的结论推广到了更一般的Hosono-Mimura型竞争扩散系统中。 This paper proves the existence of traveling wavefronts for a reaction-diffusion system with nonlocal diffusion and delays, which is based upon the crossing iteration technique with upper-lower solutions. With the conclusion arrived at, the competitive Lotka-Volterra model can be extended to more general competitive Hosono-Mimura model.
作者 吴庆华
出处 《湖北工程学院学报》 2013年第6期86-89,共4页 Journal of Hubei Engineering University
基金 国家自然科学基金(11171127) 湖北工程学院科研项目(Z2013018)
关键词 行波解 Hosono-Mimura型竞争模型 时滞 反应扩散方程 traveling wave solution competitive Hosono-mimura model delay reaction-diffusion e- quation
  • 相关文献

参考文献6

  • 1Wu J H,Zou X F. Traveling wave fronts of reaction-diffusion systems with delays[J].J Dyna Diff Equa,2001,(13):651-687. 被引量:1
  • 2Zou X F,Wu J H. Existence of travelling wavefronts in delayed reaction-diffusion system via monotone iteration method[A].1997.2589-2598. 被引量:1
  • 3Li W T,Lin G,Ruan S G. Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems[J].{H}NONLINEARITY,2006,(19):1253-1273. 被引量:1
  • 4Yu Z X,Yuan R. Traveling waves solutions in nonlocal reaction-diffusion systems with delays and applications[J].{H}ANZIAM JOURNAL,2009,(01):49-66. 被引量:1
  • 5夏静,余志先,袁荣.一类具有非局部扩散的时滞Lotka-Volterra竞争模型的行波解[J].应用数学学报,2011,34(6):1082-1093. 被引量:2
  • 6Hosono Y,Mimura M. Singular perturbation approach to traveling waves in competing and diffusing species models[J].{H}JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY,1982,(22):435-461. 被引量:1

二级参考文献16

  • 1Kan-on Y. Parameter Dependence of Propagating Speed of Traveling Waves for Competition-diffusion Equation. SIAM. J. Math. Anal., 1995, 26:340 363. 被引量:1
  • 2Kanel J I, Zhou L. Exisence of Wave Front Solutions and Estimates of Wave Speed for a Competition- diffusion System. Nonlinear Analysis, TMA, 1996, 254:433 463. 被引量:1
  • 3Tang M M, Fife P C. Propagating Fronts for Competing Species Equations with Diffusion. Arch. Rational Mech. Anal., 1980, 73:69-77. 被引量:1
  • 4Schaaf K W. Asympotic Behavior and Travelling Wave Solutions for Parabolic Functional Differential Equations. Trans. Am. Math. Soc., 1987, 302:587 615. 被引量:1
  • 5Huang J H, Zou X F. Existence of Travelling Wavefronts of Delayed Reaction-diffusion Systems without Monotonicity. Discrete and Cont. Dyn. Sys., 2003, 9:925-936. 被引量:1
  • 6Ma S W. Traveling Wavefronts for Delayed Reaction-diffusion Systems via a Fixed Point Theorem. J. Diff. Equa., 2001, 171:294-314. 被引量:1
  • 7Wu J H, Zou X F. Travelling Wave Fronts of Reaction-diffusion Systems with Delays. J. Dyna. Diff. Equa., 2001, 13:651 687. 被引量:1
  • 8Yu Z X, Yuan R. Traveling Wave Fronts in Reaction-diffusion Systems with Spatic~temporal Delay and Applications. Discret. Contin. Dyn. Syst. (Series B), 2010, 13:709-728. 被引量:1
  • 9Zou X F, Wu J H. Existence of Travelling Wavefronts in Delayed Reaction-diffusion System via Monotone Iteration Method. Proc. Amer. Math. Soc., 1997, 125:2589-2598. 被引量:1
  • 10Li W T, Lin G, Ruan S G. Exisence of Traveling Wave Solutions in Delayed Reaction-diffusion Systems with Applications to Diffusion-competition Systems. Nonlinearity, 2006, 19:1253-1273. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部