期刊文献+

WC-TiC-TaC无金属粘结相硬质合金的热压致密化与晶粒生长行为 被引量:7

Hot pressing densification and grain growth behavior of WC-TiC-TaC binderless carbide
下载PDF
导出
摘要 采用Cr、V掺杂超细WC与TaTiC2型单一相成分WC-36.5TiC-24.5TaC复式碳化物粉末为原料,通过1 700℃、20 MPa热压工艺,制备WC-3.65TiC-2.45TaC-0.47Cr3C2-0.28VC无金属粘结相硬质合金。采用X射线衍射分析技术研究烧结过程中的物相转变,采用扫描电镜与能谱仪对合金微观组织结构特征进行观察与分析。结果表明,在高温、高压固相烧结过程中,发生了W原子向复式碳化物中的大量固溶、TaTiC2型固溶体向TiWC2型固溶体的物相转变以及固溶体中Ta、Ti原子向WC中的反向固溶。合金固相烧结致密化主要机制为W原子与Ta、Ti原子之间的非平衡体扩散机制以及高温、高压下物质的粘性/塑性流动机制。W原子在固溶体型复式碳化物粘结相中的各向异性溶解-析出会显著削弱晶粒生长抑制剂的功能,导致板状WC晶粒的形成。 WC-3.65TiC-2.45TaC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing at the temperature of 1 700 ℃ and pressure of 20 MPa.Ultrafine tungsten carbide doped with V and Cr and WC-36.5TiC-24.5TaC mixed carbide with TaTiC2 type phase composition were used as the raw materials.X-ray diffraction technology was used to study the phase transformation during the sintering process.Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the microstructure.The results show that during the sintering process W atoms dissolve on a mass scale into the crystal lattices of the mixed carbide,which results in the phase transformation of the solid solution from TaTiC2 type to TiWC2 type.Meanwhile,the reverse dissolution of Ta and Ti atoms into the WC crystal lattices takes place.The mechanism for the densification through solid phase sintering is dominated by the bulk diffusion among W,Ta and Ti atoms in a nonequilibrium manner and a viscosity/plastic flow of material caused by the high temperature and high pressure.The anisotropic dissolution and precipitation of W atoms in the mixed carbide binder phase can substantially weaken the function of the grain growth inhibition and result in the formation of platelet WC grains.
出处 《粉末冶金材料科学与工程》 EI 2011年第5期781-786,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51074189 50823006) 湖南省科技计划重点项目(2010FJ2006) 高等学校博士学科点专项科研基金项目(20100162110001) 国家科技重大专项(2009ZX04012-032 2011BAE09B02)
关键词 无粘结相硬质合金 烧结 物相转变 扩散行为 晶粒生长抑制 XRD分析 板晶状 binderless carbide sintering phase transformation diffusion behavior grain growth inhibition XRD analysis platelet grain
  • 相关文献

参考文献19

  • 1TSAI K M. The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide [J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 188-201. 被引量:1
  • 2SHON I J, KIM B R, DOH J M, YOON J K. Consolidation of binderless nanostructtn'ed titanium carbide by high-frequency induction heated sintering [J]. Ceramics International, 2010, 36(6): 1797-1803. 被引量:1
  • 3KIM B R, WOO K D, DOH J M, et al. Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide [J]. Ceramics International, 2009, 35(8): 3395-3400. 被引量:1
  • 4KIM B Y, WOO K D, YOON J K, et al. Mechanical properties and lpid consolidation of binderless niobium carbide [J]. Journal of Alloys and Compounds, 2009, 481(1/2): 573-6. 被引量:1
  • 5HUANG S G, VANMEENSEL K, VAN DER BIEST O, et al. Binderless WC and WC-VC materials obtained by pulsed electric current sintering [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 41-47. 被引量:1
  • 6KIM H C, KIM D K, WOO K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 48-54. 被引量:1
  • 7KIM, H C, PARK H K, JEONG I K, et al. Sintering of binderless WC-Mo2C hard materials by rapid sintering process [J].Ceramics International, 2008, 34, (6): 1419-1423. 被引量:1
  • 8IMASATO S, TOKUMOTO K, KITADA T. Properties of ultra free grain binderless cemented carbide 'RCCFN' [J]. Intentional Journal of Refractory Metals and Hard Materials, 1995, 13(5): 305-312. 被引量:1
  • 9王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1990. 被引量:9
  • 10BRIESECK M, BOHN M, LENGAUER W. Diffusion and solubility of Cr in WC [J]. Journal of Alloys and Compounds, 2010, 489(2): 408-414. 被引量:1

二级参考文献49

  • 1张立,陈述,张传福,黄伯云.硬质合金混合料制备新工艺特征分析[J].中国有色金属学报,2005,15(2):236-240. 被引量:9
  • 2[1]CHEN Li-min, LIN Cheng-guang, Gerhard G, et al. Rare earth (RE) doped cemented carbides [J]. P/M Science & Technology Briefs, 1999, 1(5): 11-15. 被引量:1
  • 3[2]Schubert W D, Neumeister H, Kinger G, et al. Hardness to toughness relationship of fine-grained WC-Co hardmetals [J]. International Journal of Refractory Metals &Hard Materials, 1998, 16: 133-142. 被引量:1
  • 4[3]Kinger G. A study on Palmqvist toughness testing of fine-grained WC-Co alloys [D]. Vienna: TU-Vienna, 1996. 被引量:1
  • 5[4]Neumeister H. The hardness/ toughness relationship of fine-grained WC-Co hardmetals [B]. Vienna: TU- Vienna,1997. 被引量:1
  • 6[5]Shetty D K, Wright I G, Mincer P N. Indentation fracture of WC-Co cermets[J]. Journal of Material Science, 1985,20(5) : 1873-1882. 被引量:1
  • 7[6]Shetty D K, Wright I G. On estimating fracture toughness of cemented carbide from Palmqvist crack sizes[J]. Journal of Material Science Letters, 1986, 5(3): 365-368. 被引量:1
  • 8[7]Roebuck B, Coles W. Mechanical test discriminability for WC hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 1992, 11(3) : 127-136. 被引量:1
  • 9[8]Sommer M, Schubert W D, Zobetz E, et al. On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys [A]. Kneringer G, Rodhammer P, et al. 15th International Plansee Seminar[C]. Reutte: PLANSEE Holding AG, 2001, 4: 299-315. 被引量:1
  • 10[9]Kitamura K, Kobayashi M, Hayashi K. Properties of new WC-Co base hardmetal prepared from CoxWyCz complex carbide powder instead of WC+Co mixed powder[A]. Kneringer G, Rodhammer P, Wildner H. 15th International Plansee Seminar[C]. Reutte: PLANSEE Holding AG, 2001, 2: 279-294. 被引量:1

共引文献38

同被引文献81

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部